Cargando…

Non-Abelian adiabatic geometric transformations in a cold strontium gas

Topology, geometry, and gauge fields play key roles in quantum physics as exemplified by fundamental phenomena such as the Aharonov–Bohm effect, the integer quantum Hall effect, the spin Hall, and topological insulators. The concept of topological protection has also become a salient ingredient in m...

Descripción completa

Detalles Bibliográficos
Autores principales: Leroux, F., Pandey, K., Rehbi, R., Chevy, F., Miniatura, C., Grémaud, B., Wilkowski, D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123465/
https://www.ncbi.nlm.nih.gov/pubmed/30181572
http://dx.doi.org/10.1038/s41467-018-05865-3
Descripción
Sumario:Topology, geometry, and gauge fields play key roles in quantum physics as exemplified by fundamental phenomena such as the Aharonov–Bohm effect, the integer quantum Hall effect, the spin Hall, and topological insulators. The concept of topological protection has also become a salient ingredient in many schemes for quantum information processing and fault-tolerant quantum computation. The physical properties of such systems crucially depend on the symmetry group of the underlying holonomy. Here, we study a laser-cooled gas of strontium atoms coupled to laser fields through a four-level resonant tripod scheme. By cycling the relative phases of the tripod beams, we realize non-Abelian SU(2) geometrical transformations acting on the dark states of the system and demonstrate their non-Abelian character. We also reveal how the gauge field imprinted on the atoms impact their internal state dynamics. It leads to a thermometry method based on the interferometric displacement of atoms in the tripod beams.