Cargando…
Unraveling the bioactivity of anticancer peptides as deduced from machine learning
Cancer imposes a global health burden as it represents one of the leading causes of morbidity and mortality while also giving rise to significant economic burden owing to the associated expenditures for its monitoring and treatment. In spite of advancements in cancer therapy, the low success rate an...
Autores principales: | Shoombuatong, Watshara, Schaduangrat, Nalini, Nantasenamat, Chanin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Leibniz Research Centre for Working Environment and Human Factors
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123611/ https://www.ncbi.nlm.nih.gov/pubmed/30190664 http://dx.doi.org/10.17179/excli2018-1447 |
Ejemplares similares
-
ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides
por: Schaduangrat, Nalini, et al.
Publicado: (2019) -
Towards understanding aromatase inhibitory activity via QSAR modeling
por: Shoombuatong, Watshara, et al.
Publicado: (2018) -
Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation
por: Schaduangrat, Nalini, et al.
Publicado: (2019) -
iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou’s 5-Steps Rule and Informative Physicochemical Properties
por: Charoenkwan, Phasit, et al.
Publicado: (2019) -
Correction: Shoombuatong, W., et al. iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou’s 5-Steps Rule and Informative Physicochemical Properties. Int. J. Mol. Sci. 2020, 21, 75
por: Charoenkwan, Phasit, et al.
Publicado: (2020)