Cargando…

Synthetic gene regulation for independent external induction of the Saccharomyces cerevisiae pseudohyphal growth phenotype

Pseudohyphal growth is a multicellular phenotype naturally performed by wild budding yeast cells in response to stress. Unicellular yeast cells undergo gross changes in their gene regulation and elongate to form branched filament structures consisting of connected cells. Here, we construct synthetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Pothoulakis, Georgios, Ellis, Tom
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123699/
https://www.ncbi.nlm.nih.gov/pubmed/30271894
http://dx.doi.org/10.1038/s42003-017-0008-0
Descripción
Sumario:Pseudohyphal growth is a multicellular phenotype naturally performed by wild budding yeast cells in response to stress. Unicellular yeast cells undergo gross changes in their gene regulation and elongate to form branched filament structures consisting of connected cells. Here, we construct synthetic gene regulation systems to enable external induction of pseudohyphal growth in Saccharomyces cerevisiae. By controlling the expression of the natural PHD1 and FLO8 genes we are able to trigger pseudohyphal growth in both diploid and haploid yeast, even in different types of rich media. Using this system, we also investigate how members of the BUD gene family control filamentation in haploid cells. Finally, we employ a synthetic genetic timer network to control pseudohyphal growth and further explore the reversibility of differentiation. Our work demonstrates that synthetic regulation can exert control over a complex multigene phenotype and offers opportunities for rationally modifying the resulting multicellular structure.