Cargando…
Data and Power Efficient Intelligence with Neuromorphic Learning Machines
The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine le...
Autor principal: | Neftci, Emre O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123858/ https://www.ncbi.nlm.nih.gov/pubmed/30240646 http://dx.doi.org/10.1016/j.isci.2018.06.010 |
Ejemplares similares
-
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines
por: Neftci, Emre O., et al.
Publicado: (2017) -
Event-driven contrastive divergence for spiking neuromorphic systems
por: Neftci, Emre, et al.
Publicado: (2014) -
PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems
por: Stefanini, Fabio, et al.
Publicado: (2014) -
Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines
por: Neftci, Emre O., et al.
Publicado: (2016) -
Learning in energy-efficient neuromorphic computing
por: Zheng, Nan, et al.
Publicado: (2019)