Cargando…

Strain energy analysis of floor heave in longwall gateroads

Floor heave in longwall gateroads is a severe issue that affects mining safety and efficiency. Researchers, however, have limited understanding on the floor heave mechanism because the deformation of post-failure rocks in the floor was seldom considered previously. In this study, we developed a theo...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Meng, Zheng, Dongjie, Wang, Kewei, Li, Wenfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124036/
https://www.ncbi.nlm.nih.gov/pubmed/30225065
http://dx.doi.org/10.1098/rsos.180691
Descripción
Sumario:Floor heave in longwall gateroads is a severe issue that affects mining safety and efficiency. Researchers, however, have limited understanding on the floor heave mechanism because the deformation of post-failure rocks in the floor was seldom considered previously. In this study, we developed a theoretical model using the strain energy theory to investigate the post-failure deformation of rocks. This model was validated before being implemented into a numerical modelling package, FLAC(3D), for floor heave analysis. Based on a case study of a longwall entry employing a stiff–yield pillar configuration, we observe that massive floor heave occurs at the entry rib that takes less loads (yield pillar) and eventually propagates towards the other rib bearing a significant amount of loads (stiff pillar). This observation sheds light on the floor heave mechanism in longwall gateroads and has major implications for coal mine ground control.