Cargando…

Quantifying layer similarity in multiplex networks: a systematic study

Computing layer similarities is an important way of characterizing multiplex networks because various static properties and dynamic processes depend on the relationships between layers. We provide a taxonomy and experimental evaluation of approaches to compare layers in multiplex networks. Our taxon...

Descripción completa

Detalles Bibliográficos
Autores principales: Bródka, Piotr, Chmiel, Anna, Magnani, Matteo, Ragozini, Giancarlo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124071/
https://www.ncbi.nlm.nih.gov/pubmed/30224981
http://dx.doi.org/10.1098/rsos.171747
_version_ 1783352965319360512
author Bródka, Piotr
Chmiel, Anna
Magnani, Matteo
Ragozini, Giancarlo
author_facet Bródka, Piotr
Chmiel, Anna
Magnani, Matteo
Ragozini, Giancarlo
author_sort Bródka, Piotr
collection PubMed
description Computing layer similarities is an important way of characterizing multiplex networks because various static properties and dynamic processes depend on the relationships between layers. We provide a taxonomy and experimental evaluation of approaches to compare layers in multiplex networks. Our taxonomy includes, systematizes and extends existing approaches, and is complemented by a set of practical guidelines on how to apply them.
format Online
Article
Text
id pubmed-6124071
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-61240712018-09-17 Quantifying layer similarity in multiplex networks: a systematic study Bródka, Piotr Chmiel, Anna Magnani, Matteo Ragozini, Giancarlo R Soc Open Sci Computer Science Computing layer similarities is an important way of characterizing multiplex networks because various static properties and dynamic processes depend on the relationships between layers. We provide a taxonomy and experimental evaluation of approaches to compare layers in multiplex networks. Our taxonomy includes, systematizes and extends existing approaches, and is complemented by a set of practical guidelines on how to apply them. The Royal Society Publishing 2018-08-08 /pmc/articles/PMC6124071/ /pubmed/30224981 http://dx.doi.org/10.1098/rsos.171747 Text en © 2018 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Computer Science
Bródka, Piotr
Chmiel, Anna
Magnani, Matteo
Ragozini, Giancarlo
Quantifying layer similarity in multiplex networks: a systematic study
title Quantifying layer similarity in multiplex networks: a systematic study
title_full Quantifying layer similarity in multiplex networks: a systematic study
title_fullStr Quantifying layer similarity in multiplex networks: a systematic study
title_full_unstemmed Quantifying layer similarity in multiplex networks: a systematic study
title_short Quantifying layer similarity in multiplex networks: a systematic study
title_sort quantifying layer similarity in multiplex networks: a systematic study
topic Computer Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124071/
https://www.ncbi.nlm.nih.gov/pubmed/30224981
http://dx.doi.org/10.1098/rsos.171747
work_keys_str_mv AT brodkapiotr quantifyinglayersimilarityinmultiplexnetworksasystematicstudy
AT chmielanna quantifyinglayersimilarityinmultiplexnetworksasystematicstudy
AT magnanimatteo quantifyinglayersimilarityinmultiplexnetworksasystematicstudy
AT ragozinigiancarlo quantifyinglayersimilarityinmultiplexnetworksasystematicstudy