Cargando…
Algorithmically probable mutations reproduce aspects of evolution, such as convergence rate, genetic memory and modularity
Natural selection explains how life has evolved over millions of years from more primitive forms. The speed at which this happens, however, has sometimes defied formal explanations when based on random (uniformly distributed) mutations. Here, we investigate the application of a simplicity bias based...
Autores principales: | Hernández-Orozco, Santiago, Kiani, Narsis A., Zenil, Hector |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124114/ https://www.ncbi.nlm.nih.gov/pubmed/30225028 http://dx.doi.org/10.1098/rsos.180399 |
Ejemplares similares
Ejemplares similares
-
Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces
por: Hernández-Orozco, Santiago, et al.
Publicado: (2021) -
A Decomposition Method for Global Evaluation of Shannon Entropy and Local Estimations of Algorithmic Complexity
por: Zenil, Hector, et al.
Publicado: (2018) -
The Thermodynamics of Network Coding, and an Algorithmic Refinement of the Principle of Maximum Entropy †
por: Zenil, Hector, et al.
Publicado: (2019) -
Symmetry and Correspondence of Algorithmic Complexity over Geometric, Spatial and Topological Representations †
por: Zenil, Hector, et al.
Publicado: (2018) -
A Review of Graph and Network Complexity from an Algorithmic Information Perspective
por: Zenil, Hector, et al.
Publicado: (2018)