Cargando…
Triptriolide Alleviates Lipopolysaccharide-Induced Liver Injury by Nrf2 and NF-κB Signaling Pathways
Nrf2 (Nuclear Factor Erythroid 2 Related Factor 2) transcription factor not only regulates oxidative stress response, but also represses inflammation by regulating cytokines production and cross-talking with NF-κB signaling pathways. Nrf2 plays an essential role in liver injury induced by oxidative...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124152/ https://www.ncbi.nlm.nih.gov/pubmed/30210350 http://dx.doi.org/10.3389/fphar.2018.00999 |
_version_ | 1783352984915148800 |
---|---|
author | Yang, Yi-Qi Yan, Xiao-Teng Wang, Kai Tian, Rui-Min Lu, Zhao-Yu Wu, Li-Lan Xu, Hong-Tao Wu, Yun-Shan Liu, Xu-Sheng Mao, Wei Xu, Peng Liu, Bo |
author_facet | Yang, Yi-Qi Yan, Xiao-Teng Wang, Kai Tian, Rui-Min Lu, Zhao-Yu Wu, Li-Lan Xu, Hong-Tao Wu, Yun-Shan Liu, Xu-Sheng Mao, Wei Xu, Peng Liu, Bo |
author_sort | Yang, Yi-Qi |
collection | PubMed |
description | Nrf2 (Nuclear Factor Erythroid 2 Related Factor 2) transcription factor not only regulates oxidative stress response, but also represses inflammation by regulating cytokines production and cross-talking with NF-κB signaling pathways. Nrf2 plays an essential role in liver injury induced by oxidative stress and inflammation. Triptriolide (T11) is a minor component of Tripterygium wilfordii Hook F. (TwHF), which can be obtained by hydrolysis reaction of triptolide (T9). The major purpose of this study is to clarify the regulating effects of T11 on oxidative stress and inflammation in vivo and in vitro. LPS-stimulated RAW 264.7 cells were used to verify the regulating effects of T11 on oxidative stress (ROS and Nrf2 signaling pathway) and inflammatory cytokines production (TNF-α, IL-6 and IL-1β). The antioxidant responsive element (ARE) luciferase assay was employed to evaluate Nrf2 activation effect of T11 in HEK-293T cells. Lipopolysaccharides (LPS) induced acute liver injury (ALI) in BALB/c mice were used to study the protective effects (ALT, AST, MDA, SOD, histopathology and neutrophils/macrophages filtration) and the underlying protection mechanisms of ALI amelioration (Nrf2 and NF-κB signaling pathway) of T11. Firstly, the results showed that T11 can not only effectively decrease the productions of inflammatory cytokines (TNF-α, IL-6 and IL-1β), ROS and NO in LPS-stimulated RAW 264.7 cells, but also further significantly increase the activity of Nrf2 in HEK-293T cells. Secondly, the results suggested that T11 could dramatically decrease the oxidative stress responses (SOD and MDA) and inflammation (histopathology, neutrophils/macrophages filtration, TNF-α, IL-6 and IL-1β production) in LPS-induced ALI in BALB/c mice. Finally, the results implied that T11 could dramatically increase Nrf2 protein expression and decrease p-TAK1, p-IκBα and NF-κB protein expression both in vivo and in vitro. In conclusion, our findings indicated that T11 could alleviate LPS induced oxidative stress and inflammation by regulating Nrf2 and NF-κB signaling pathways in vitro and in vivo, which offers a novel insights for the application of TwHF in clinical. |
format | Online Article Text |
id | pubmed-6124152 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61241522018-09-12 Triptriolide Alleviates Lipopolysaccharide-Induced Liver Injury by Nrf2 and NF-κB Signaling Pathways Yang, Yi-Qi Yan, Xiao-Teng Wang, Kai Tian, Rui-Min Lu, Zhao-Yu Wu, Li-Lan Xu, Hong-Tao Wu, Yun-Shan Liu, Xu-Sheng Mao, Wei Xu, Peng Liu, Bo Front Pharmacol Pharmacology Nrf2 (Nuclear Factor Erythroid 2 Related Factor 2) transcription factor not only regulates oxidative stress response, but also represses inflammation by regulating cytokines production and cross-talking with NF-κB signaling pathways. Nrf2 plays an essential role in liver injury induced by oxidative stress and inflammation. Triptriolide (T11) is a minor component of Tripterygium wilfordii Hook F. (TwHF), which can be obtained by hydrolysis reaction of triptolide (T9). The major purpose of this study is to clarify the regulating effects of T11 on oxidative stress and inflammation in vivo and in vitro. LPS-stimulated RAW 264.7 cells were used to verify the regulating effects of T11 on oxidative stress (ROS and Nrf2 signaling pathway) and inflammatory cytokines production (TNF-α, IL-6 and IL-1β). The antioxidant responsive element (ARE) luciferase assay was employed to evaluate Nrf2 activation effect of T11 in HEK-293T cells. Lipopolysaccharides (LPS) induced acute liver injury (ALI) in BALB/c mice were used to study the protective effects (ALT, AST, MDA, SOD, histopathology and neutrophils/macrophages filtration) and the underlying protection mechanisms of ALI amelioration (Nrf2 and NF-κB signaling pathway) of T11. Firstly, the results showed that T11 can not only effectively decrease the productions of inflammatory cytokines (TNF-α, IL-6 and IL-1β), ROS and NO in LPS-stimulated RAW 264.7 cells, but also further significantly increase the activity of Nrf2 in HEK-293T cells. Secondly, the results suggested that T11 could dramatically decrease the oxidative stress responses (SOD and MDA) and inflammation (histopathology, neutrophils/macrophages filtration, TNF-α, IL-6 and IL-1β production) in LPS-induced ALI in BALB/c mice. Finally, the results implied that T11 could dramatically increase Nrf2 protein expression and decrease p-TAK1, p-IκBα and NF-κB protein expression both in vivo and in vitro. In conclusion, our findings indicated that T11 could alleviate LPS induced oxidative stress and inflammation by regulating Nrf2 and NF-κB signaling pathways in vitro and in vivo, which offers a novel insights for the application of TwHF in clinical. Frontiers Media S.A. 2018-08-29 /pmc/articles/PMC6124152/ /pubmed/30210350 http://dx.doi.org/10.3389/fphar.2018.00999 Text en Copyright © 2018 Yang, Yan, Wang, Tian, Lu, Wu, Xu, Wu, Liu, Mao, Xu and Liu. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Yang, Yi-Qi Yan, Xiao-Teng Wang, Kai Tian, Rui-Min Lu, Zhao-Yu Wu, Li-Lan Xu, Hong-Tao Wu, Yun-Shan Liu, Xu-Sheng Mao, Wei Xu, Peng Liu, Bo Triptriolide Alleviates Lipopolysaccharide-Induced Liver Injury by Nrf2 and NF-κB Signaling Pathways |
title | Triptriolide Alleviates Lipopolysaccharide-Induced Liver Injury by Nrf2 and NF-κB Signaling Pathways |
title_full | Triptriolide Alleviates Lipopolysaccharide-Induced Liver Injury by Nrf2 and NF-κB Signaling Pathways |
title_fullStr | Triptriolide Alleviates Lipopolysaccharide-Induced Liver Injury by Nrf2 and NF-κB Signaling Pathways |
title_full_unstemmed | Triptriolide Alleviates Lipopolysaccharide-Induced Liver Injury by Nrf2 and NF-κB Signaling Pathways |
title_short | Triptriolide Alleviates Lipopolysaccharide-Induced Liver Injury by Nrf2 and NF-κB Signaling Pathways |
title_sort | triptriolide alleviates lipopolysaccharide-induced liver injury by nrf2 and nf-κb signaling pathways |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124152/ https://www.ncbi.nlm.nih.gov/pubmed/30210350 http://dx.doi.org/10.3389/fphar.2018.00999 |
work_keys_str_mv | AT yangyiqi triptriolidealleviateslipopolysaccharideinducedliverinjurybynrf2andnfkbsignalingpathways AT yanxiaoteng triptriolidealleviateslipopolysaccharideinducedliverinjurybynrf2andnfkbsignalingpathways AT wangkai triptriolidealleviateslipopolysaccharideinducedliverinjurybynrf2andnfkbsignalingpathways AT tianruimin triptriolidealleviateslipopolysaccharideinducedliverinjurybynrf2andnfkbsignalingpathways AT luzhaoyu triptriolidealleviateslipopolysaccharideinducedliverinjurybynrf2andnfkbsignalingpathways AT wulilan triptriolidealleviateslipopolysaccharideinducedliverinjurybynrf2andnfkbsignalingpathways AT xuhongtao triptriolidealleviateslipopolysaccharideinducedliverinjurybynrf2andnfkbsignalingpathways AT wuyunshan triptriolidealleviateslipopolysaccharideinducedliverinjurybynrf2andnfkbsignalingpathways AT liuxusheng triptriolidealleviateslipopolysaccharideinducedliverinjurybynrf2andnfkbsignalingpathways AT maowei triptriolidealleviateslipopolysaccharideinducedliverinjurybynrf2andnfkbsignalingpathways AT xupeng triptriolidealleviateslipopolysaccharideinducedliverinjurybynrf2andnfkbsignalingpathways AT liubo triptriolidealleviateslipopolysaccharideinducedliverinjurybynrf2andnfkbsignalingpathways |