Cargando…
Joint bayesian convolutional sparse coding for image super-resolution
We propose a convolutional sparse coding (CSC) for super resolution (CSC-SR) algorithm with a joint Bayesian learning strategy. Due to the unknown parameters in solving CSC-SR, the performance of the algorithm depends on the choice of the parameter. To this end, a coupled Beta-Bernoulli process is e...
Autores principales: | Ge, Qi, Shao, Wenze, Wang, Liqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124716/ https://www.ncbi.nlm.nih.gov/pubmed/30183722 http://dx.doi.org/10.1371/journal.pone.0201463 |
Ejemplares similares
-
Remote sensing image super-resolution using multi-scale convolutional sparse coding network
por: Cheng, Ruihong, et al.
Publicado: (2022) -
Sparse convolutional neural network for high-resolution skull shape completion and shape super-resolution
por: Li, Jianning, et al.
Publicado: (2023) -
Variational Bayesian Pansharpening with Super-Gaussian Sparse Image Priors
por: Pérez-Bueno, Fernando, et al.
Publicado: (2020) -
Sparse deconvolution of high-density super-resolution images
por: Hugelier, Siewert, et al.
Publicado: (2016) -
Super-resolution photoacoustic and ultrasound imaging with sparse arrays
por: Vilov, Sergey, et al.
Publicado: (2020)