Cargando…
Probing behaviors and their plasticity for the aphid Sitobion avenae on three alternative host plants
Insects may develop different behavioral phenotypes in response to heterogeneous environments (e.g., host plants), but the plasticity of their feeding behaviors has been rarely explored. In order to address the issue, clones of the English grain aphid, Sitobion avenae (Fabricius), were collected fro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124740/ https://www.ncbi.nlm.nih.gov/pubmed/30183744 http://dx.doi.org/10.1371/journal.pone.0203219 |
Sumario: | Insects may develop different behavioral phenotypes in response to heterogeneous environments (e.g., host plants), but the plasticity of their feeding behaviors has been rarely explored. In order to address the issue, clones of the English grain aphid, Sitobion avenae (Fabricius), were collected from wheat, and their probing behaviors were recorded on three plants. Our results demonstrated that S. avenae individuals on the alternative plants (i.e., barley and oat) tended to have higher frequency of non-probing (Np), increased duration of the pathway phase, increased phloem salivation, and decreased phloem ingestion (E2), compared to those on the source plant (i.e., wheat), showing the resistance of barley and oat to this aphid’s feeding. This aphid showed apparently high extents of plasticity for all test probing behaviors on barley or oat. Positive selection for higher extents of plasticity in E2 duration was identified on barley and oat. The factor ‘clone’ alone explained 30.6% to 70.1% of the total variance for each behavioral plasticity, suggesting that the divergence of probing behavior plasticity in S. avenae had a genetic basis. This aphid’s fitness correlated positively with the plasticity of Np frequency and E2 frequency. Some behaviors and their corresponding plasticities (e.g., the frequency of xylem ingestion and its plasticity) were found to be correlated characters, probably reflecting the limits for the evolution of higher extents of behavioral plasticity in this aphid. The differential probing behaviors and their plasticity in S. avenae can have significant implications for the adaptation and management of aphids on different plants. |
---|