Cargando…
Double enhancement of hydrogen storage capacity of Pd nanoparticles by 20 at% replacement with Ir; systematic control of hydrogen storage in Pd–M nanoparticles (M = Ir, Pt, Au)
We report on binary solid-solution nanoparticles (NPs) composed of Pd and Ir, which are not miscible at the equilibrium state of the bulk, for the first time, by means of a process of hydrogen absorption/desorption from core (Pd)/shell (Ir) NPs. Only 20 at% replacement with Ir atoms doubled the hydr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124882/ https://www.ncbi.nlm.nih.gov/pubmed/30210762 http://dx.doi.org/10.1039/c8sc01460d |
Sumario: | We report on binary solid-solution nanoparticles (NPs) composed of Pd and Ir, which are not miscible at the equilibrium state of the bulk, for the first time, by means of a process of hydrogen absorption/desorption from core (Pd)/shell (Ir) NPs. Only 20 at% replacement with Ir atoms doubled the hydrogen-storage capability compared to Pd NPs, which are a representative hydrogen-storage material. Furthermore, the systematic control of hydrogen concentrations and the corresponding pressure in Pd and Pd–M NPs (M = Ir, Pt, Au) have been achieved based on the band filling control of Pd NPs. |
---|