Cargando…
Data-Driven Markov Decision Process Approximations for Personalized Hypertension Treatment Planning
Background: Markov decision process (MDP) models are powerful tools. They enable the derivation of optimal treatment policies but may incur long computational times and generate decision rules that are challenging to interpret by physicians. Methods: In an effort to improve usability and interpretab...
Autores principales: | Schell, Greggory J., Marrero, Wesley J., Lavieri, Mariel S., Sussman, Jeremy B., Hayward, Rodney A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124941/ https://www.ncbi.nlm.nih.gov/pubmed/30288409 http://dx.doi.org/10.1177/2381468316674214 |
Ejemplares similares
-
Implications of True and Perceived Treatment Burden on Cardiovascular
Medication Use
por: Sussman, Jeremy B., et al.
Publicado: (2017) -
Filtering data from the collaborative initial glaucoma treatment study for improved identification of glaucoma progression
por: Schell, Greggory J, et al.
Publicado: (2013) -
Approximating countable Markov chains
por: Freedman, David
Publicado: (1983) -
Approximate quantum Markov chains
por: Sutter, David
Publicado: (2018) -
Markov operators, positive semigroups and approximation processes
por: Altomare, Francesco, et al.
Publicado: (2015)