Cargando…
The Smell of Hypoxia: using an electronic nose at altitude and proof of concept of its role in the prediction and diagnosis of acute mountain sickness
Electronic nose (e‐nose) devices may be used to identify volatile organic compounds (VOCs) in exhaled breath. VOCs generated via metabolic processes are candidate biomarkers of (patho)physiological pathways. We explored the feasibility of using an e‐nose to generate human “breathprints” at high alti...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125242/ https://www.ncbi.nlm.nih.gov/pubmed/30187693 http://dx.doi.org/10.14814/phy2.13854 |
_version_ | 1783353120488685568 |
---|---|
author | Lacey, Jonathan R. N. Kidel, Carlos van der Kaaij, Jildou M. Brinkman, Paul Gilbert‐Kawai, Edward T. Grocott, Michael P. W. Mythen, Michael G. Martin, Daniel S. |
author_facet | Lacey, Jonathan R. N. Kidel, Carlos van der Kaaij, Jildou M. Brinkman, Paul Gilbert‐Kawai, Edward T. Grocott, Michael P. W. Mythen, Michael G. Martin, Daniel S. |
author_sort | Lacey, Jonathan R. N. |
collection | PubMed |
description | Electronic nose (e‐nose) devices may be used to identify volatile organic compounds (VOCs) in exhaled breath. VOCs generated via metabolic processes are candidate biomarkers of (patho)physiological pathways. We explored the feasibility of using an e‐nose to generate human “breathprints” at high altitude. Furthermore, we explored the hypothesis that pathophysiological processes involved in the development of acute mountain sickness (AMS) would manifest as altered VOC profiles. Breath analysis was performed on Sherpa and lowlander trekkers at high altitude (3500 m). The Lake Louise Scoring (LLS) system was used to diagnose AMS. Raw data were reduced by principal component (PC) analysis (PCA). Cross validated linear discriminant analysis (CV‐LDA) and receiver‐operating characteristic area under curve (ROC‐AUC) assessed discriminative function. Breathprints suitable for analysis were obtained from 58% (37/64) of samples. PCA showed significant differences between breathprints from participants with, and without, AMS; CV‐LDA showed correct classification of 83.8%, ROC‐AUC 0.86; PC 1 correlated with AMS severity. There were significant differences between breathprints of participants who remained AMS negative and those whom later developed AMS (CV‐LDA 68.8%, ROC‐AUC 0.76). PCA demonstrated discrimination between Sherpas and lowlanders (CV‐LDA 89.2%, ROC‐AUC 0.936). This study demonstrated the feasibility of breath analysis for VOCs using an e‐nose at high altitude. Furthermore, it provided proof‐of‐concept data supporting e‐nose utility as an objective tool in the prediction and diagnosis of AMS. E‐nose technology may have substantial utility both in altitude medicine and under other circumstances where (mal)adaptation to hypoxia may be important (e.g., critically ill patients). |
format | Online Article Text |
id | pubmed-6125242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61252422018-09-10 The Smell of Hypoxia: using an electronic nose at altitude and proof of concept of its role in the prediction and diagnosis of acute mountain sickness Lacey, Jonathan R. N. Kidel, Carlos van der Kaaij, Jildou M. Brinkman, Paul Gilbert‐Kawai, Edward T. Grocott, Michael P. W. Mythen, Michael G. Martin, Daniel S. Physiol Rep Original Research Electronic nose (e‐nose) devices may be used to identify volatile organic compounds (VOCs) in exhaled breath. VOCs generated via metabolic processes are candidate biomarkers of (patho)physiological pathways. We explored the feasibility of using an e‐nose to generate human “breathprints” at high altitude. Furthermore, we explored the hypothesis that pathophysiological processes involved in the development of acute mountain sickness (AMS) would manifest as altered VOC profiles. Breath analysis was performed on Sherpa and lowlander trekkers at high altitude (3500 m). The Lake Louise Scoring (LLS) system was used to diagnose AMS. Raw data were reduced by principal component (PC) analysis (PCA). Cross validated linear discriminant analysis (CV‐LDA) and receiver‐operating characteristic area under curve (ROC‐AUC) assessed discriminative function. Breathprints suitable for analysis were obtained from 58% (37/64) of samples. PCA showed significant differences between breathprints from participants with, and without, AMS; CV‐LDA showed correct classification of 83.8%, ROC‐AUC 0.86; PC 1 correlated with AMS severity. There were significant differences between breathprints of participants who remained AMS negative and those whom later developed AMS (CV‐LDA 68.8%, ROC‐AUC 0.76). PCA demonstrated discrimination between Sherpas and lowlanders (CV‐LDA 89.2%, ROC‐AUC 0.936). This study demonstrated the feasibility of breath analysis for VOCs using an e‐nose at high altitude. Furthermore, it provided proof‐of‐concept data supporting e‐nose utility as an objective tool in the prediction and diagnosis of AMS. E‐nose technology may have substantial utility both in altitude medicine and under other circumstances where (mal)adaptation to hypoxia may be important (e.g., critically ill patients). John Wiley and Sons Inc. 2018-09-05 /pmc/articles/PMC6125242/ /pubmed/30187693 http://dx.doi.org/10.14814/phy2.13854 Text en © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Lacey, Jonathan R. N. Kidel, Carlos van der Kaaij, Jildou M. Brinkman, Paul Gilbert‐Kawai, Edward T. Grocott, Michael P. W. Mythen, Michael G. Martin, Daniel S. The Smell of Hypoxia: using an electronic nose at altitude and proof of concept of its role in the prediction and diagnosis of acute mountain sickness |
title | The Smell of Hypoxia: using an electronic nose at altitude and proof of concept of its role in the prediction and diagnosis of acute mountain sickness |
title_full | The Smell of Hypoxia: using an electronic nose at altitude and proof of concept of its role in the prediction and diagnosis of acute mountain sickness |
title_fullStr | The Smell of Hypoxia: using an electronic nose at altitude and proof of concept of its role in the prediction and diagnosis of acute mountain sickness |
title_full_unstemmed | The Smell of Hypoxia: using an electronic nose at altitude and proof of concept of its role in the prediction and diagnosis of acute mountain sickness |
title_short | The Smell of Hypoxia: using an electronic nose at altitude and proof of concept of its role in the prediction and diagnosis of acute mountain sickness |
title_sort | smell of hypoxia: using an electronic nose at altitude and proof of concept of its role in the prediction and diagnosis of acute mountain sickness |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125242/ https://www.ncbi.nlm.nih.gov/pubmed/30187693 http://dx.doi.org/10.14814/phy2.13854 |
work_keys_str_mv | AT laceyjonathanrn thesmellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT kidelcarlos thesmellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT vanderkaaijjildoum thesmellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT brinkmanpaul thesmellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT gilbertkawaiedwardt thesmellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT grocottmichaelpw thesmellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT mythenmichaelg thesmellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT martindaniels thesmellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT thesmellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT laceyjonathanrn smellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT kidelcarlos smellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT vanderkaaijjildoum smellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT brinkmanpaul smellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT gilbertkawaiedwardt smellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT grocottmichaelpw smellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT mythenmichaelg smellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT martindaniels smellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness AT smellofhypoxiausinganelectronicnoseataltitudeandproofofconceptofitsroleinthepredictionanddiagnosisofacutemountainsickness |