Cargando…

Machine learning identified an Alzheimer’s disease-related FDG-PET pattern which is also expressed in Lewy body dementia and Parkinson’s disease dementia

Utilizing the publicly available neuroimaging database enabled by Alzheimer’s disease Neuroimaging Initiative (ADNI; http://adni.loni.usc.edu/), we have compared the performance of automated classification algorithms that differentiate AD vs. normal subjects using Positron Emission Tomography (PET)...

Descripción completa

Detalles Bibliográficos
Autores principales: Katako, Audrey, Shelton, Paul, Goertzen, Andrew L., Levin, Daniel, Bybel, Bohdan, Aljuaid, Maram, Yoon, Hyun Jin, Kang, Do Young, Kim, Seok Min, Lee, Chong Sik, Ko, Ji Hyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125295/
https://www.ncbi.nlm.nih.gov/pubmed/30185806
http://dx.doi.org/10.1038/s41598-018-31653-6
Descripción
Sumario:Utilizing the publicly available neuroimaging database enabled by Alzheimer’s disease Neuroimaging Initiative (ADNI; http://adni.loni.usc.edu/), we have compared the performance of automated classification algorithms that differentiate AD vs. normal subjects using Positron Emission Tomography (PET) with fluorodeoxyglucose (FDG). General linear model, scaled subprofile modeling and support vector machines were examined. Among the tested classification methods, support vector machine with Iterative Single Data Algorithm produced the best performance, i.e., sensitivity (0.84) × specificity (0.95), by 10-fold cross-validation. We have applied the same classification algorithm to four different datasets from ADNI, Health Science Centre (Winnipeg, Canada), Dong-A University Hospital (Busan, S. Korea) and Asan Medical Centre (Seoul, S. Korea). Our data analyses confirmed that the support vector machine with Iterative Single Data Algorithm showed the best performance in prediction of future development of AD from the prodromal stage (mild cognitive impairment), and that it was also sensitive to other types of dementia such as Parkinson’s Disease Dementia and Dementia with Lewy Bodies, and that perfusion imaging using single photon emission computed tomography may achieve a similar accuracy to that of FDG-PET.