Cargando…
Diagnostics of Data-Driven Models: Uncertainty Quantification of PM7 Semi-Empirical Quantum Chemical Method
We report an evaluation of a semi-empirical quantum chemical method PM7 from the perspective of uncertainty quantification. Specifically, we apply Bound-to-Bound Data Collaboration, an uncertainty quantification framework, to characterize (a) variability of PM7 model parameter values consistent with...
Autores principales: | Oreluk, James, Liu, Zhenyuan, Hegde, Arun, Li, Wenyu, Packard, Andrew, Frenklach, Michael, Zubarev, Dmitry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125339/ https://www.ncbi.nlm.nih.gov/pubmed/30185953 http://dx.doi.org/10.1038/s41598-018-31677-y |
Ejemplares similares
-
Empirical Frequentist Coverage of Deep Learning Uncertainty Quantification Procedures
por: Kompa, Benjamin, et al.
Publicado: (2021) -
Host-Guest Interactions of Plumbagin with β-Cyclodextrin, Dimethyl-β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin: Semi-Empirical Quantum Mechanical PM6 and PM7 Methods
por: Srihakulung, Ornin, et al.
Publicado: (2018) -
Modeling pyranose ring pucker in carbohydrates using machine learning and semi‐empirical quantum chemical methods
por: Kong, Linghan, et al.
Publicado: (2022) -
Bayesian uncertainty quantification for data-driven equation learning
por: Martina-Perez, Simon, et al.
Publicado: (2021) -
The Accuracy of Semi-Empirical Quantum Chemistry Methods on Soot Formation Simulation †
por: Cong, Yang, et al.
Publicado: (2022)