Cargando…
A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease
Genome-wide association studies (GWAS), relying on hundreds of thousands of individuals, have revealed >200 genomic loci linked to metabolic disease (MD). Loss of insulin sensitivity (IS) is a key component of MD and we hypothesized that discovery of a robust IS transcriptome would help reveal th...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125682/ https://www.ncbi.nlm.nih.gov/pubmed/29986096 http://dx.doi.org/10.1093/nar/gky570 |
_version_ | 1783353207102111744 |
---|---|
author | Timmons, James A Atherton, Philip J Larsson, Ola Sood, Sanjana Blokhin, Ilya O Brogan, Robert J Volmar, Claude-Henry Josse, Andrea R Slentz, Cris Wahlestedt, Claes Phillips, Stuart M Phillips, Bethan E Gallagher, Iain J Kraus, William E |
author_facet | Timmons, James A Atherton, Philip J Larsson, Ola Sood, Sanjana Blokhin, Ilya O Brogan, Robert J Volmar, Claude-Henry Josse, Andrea R Slentz, Cris Wahlestedt, Claes Phillips, Stuart M Phillips, Bethan E Gallagher, Iain J Kraus, William E |
author_sort | Timmons, James A |
collection | PubMed |
description | Genome-wide association studies (GWAS), relying on hundreds of thousands of individuals, have revealed >200 genomic loci linked to metabolic disease (MD). Loss of insulin sensitivity (IS) is a key component of MD and we hypothesized that discovery of a robust IS transcriptome would help reveal the underlying genomic structure of MD. Using 1,012 human skeletal muscle samples, detailed physiology and a tissue-optimized approach for the quantification of coding (>18,000) and non-coding (>15,000) RNA (ncRNA), we identified 332 fasting IS-related genes (CORE-IS). Over 200 had a proven role in the biochemistry of insulin and/or metabolism or were located at GWAS MD loci. Over 50% of the CORE-IS genes responded to clinical treatment; 16 quantitatively tracking changes in IS across four independent studies (P = 0.0000053: negatively: AGL, G0S2, KPNA2, PGM2, RND3 and TSPAN9 and positively: ALDH6A1, DHTKD1, ECHDC3, MCCC1, OARD1, PCYT2, PRRX1, SGCG, SLC43A1 and SMIM8). A network of ncRNA positively related to IS and interacted with RNA coding for viral response proteins (P < 1 × 10(−48)), while reduced amino acid catabolic gene expression occurred without a change in expression of oxidative-phosphorylation genes. We illustrate that combining in-depth physiological phenotyping with robust RNA profiling methods, identifies molecular networks which are highly consistent with the genetics and biochemistry of human metabolic disease. |
format | Online Article Text |
id | pubmed-6125682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-61256822018-09-11 A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease Timmons, James A Atherton, Philip J Larsson, Ola Sood, Sanjana Blokhin, Ilya O Brogan, Robert J Volmar, Claude-Henry Josse, Andrea R Slentz, Cris Wahlestedt, Claes Phillips, Stuart M Phillips, Bethan E Gallagher, Iain J Kraus, William E Nucleic Acids Res Genomics Genome-wide association studies (GWAS), relying on hundreds of thousands of individuals, have revealed >200 genomic loci linked to metabolic disease (MD). Loss of insulin sensitivity (IS) is a key component of MD and we hypothesized that discovery of a robust IS transcriptome would help reveal the underlying genomic structure of MD. Using 1,012 human skeletal muscle samples, detailed physiology and a tissue-optimized approach for the quantification of coding (>18,000) and non-coding (>15,000) RNA (ncRNA), we identified 332 fasting IS-related genes (CORE-IS). Over 200 had a proven role in the biochemistry of insulin and/or metabolism or were located at GWAS MD loci. Over 50% of the CORE-IS genes responded to clinical treatment; 16 quantitatively tracking changes in IS across four independent studies (P = 0.0000053: negatively: AGL, G0S2, KPNA2, PGM2, RND3 and TSPAN9 and positively: ALDH6A1, DHTKD1, ECHDC3, MCCC1, OARD1, PCYT2, PRRX1, SGCG, SLC43A1 and SMIM8). A network of ncRNA positively related to IS and interacted with RNA coding for viral response proteins (P < 1 × 10(−48)), while reduced amino acid catabolic gene expression occurred without a change in expression of oxidative-phosphorylation genes. We illustrate that combining in-depth physiological phenotyping with robust RNA profiling methods, identifies molecular networks which are highly consistent with the genetics and biochemistry of human metabolic disease. Oxford University Press 2018-09-06 2018-07-09 /pmc/articles/PMC6125682/ /pubmed/29986096 http://dx.doi.org/10.1093/nar/gky570 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Genomics Timmons, James A Atherton, Philip J Larsson, Ola Sood, Sanjana Blokhin, Ilya O Brogan, Robert J Volmar, Claude-Henry Josse, Andrea R Slentz, Cris Wahlestedt, Claes Phillips, Stuart M Phillips, Bethan E Gallagher, Iain J Kraus, William E A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease |
title | A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease |
title_full | A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease |
title_fullStr | A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease |
title_full_unstemmed | A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease |
title_short | A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease |
title_sort | coding and non-coding transcriptomic perspective on the genomics of human metabolic disease |
topic | Genomics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125682/ https://www.ncbi.nlm.nih.gov/pubmed/29986096 http://dx.doi.org/10.1093/nar/gky570 |
work_keys_str_mv | AT timmonsjamesa acodingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT athertonphilipj acodingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT larssonola acodingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT soodsanjana acodingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT blokhinilyao acodingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT broganrobertj acodingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT volmarclaudehenry acodingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT josseandrear acodingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT slentzcris acodingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT wahlestedtclaes acodingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT phillipsstuartm acodingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT phillipsbethane acodingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT gallagheriainj acodingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT krauswilliame acodingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT timmonsjamesa codingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT athertonphilipj codingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT larssonola codingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT soodsanjana codingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT blokhinilyao codingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT broganrobertj codingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT volmarclaudehenry codingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT josseandrear codingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT slentzcris codingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT wahlestedtclaes codingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT phillipsstuartm codingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT phillipsbethane codingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT gallagheriainj codingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease AT krauswilliame codingandnoncodingtranscriptomicperspectiveonthegenomicsofhumanmetabolicdisease |