Cargando…

On the role of sex differences for evolution in heterogeneous and changing fitness landscapes: insights from pygmy grasshoppers

Much research has been devoted to study evolution of local adaptations by natural selection, and to explore the roles of neutral processes and developmental plasticity for patterns of diversity among individuals, populations and species. Some aspects, such as evolution of adaptive variation in pheno...

Descripción completa

Detalles Bibliográficos
Autor principal: Forsman, Anders
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125723/
https://www.ncbi.nlm.nih.gov/pubmed/30150227
http://dx.doi.org/10.1098/rstb.2017.0429
_version_ 1783353211070971904
author Forsman, Anders
author_facet Forsman, Anders
author_sort Forsman, Anders
collection PubMed
description Much research has been devoted to study evolution of local adaptations by natural selection, and to explore the roles of neutral processes and developmental plasticity for patterns of diversity among individuals, populations and species. Some aspects, such as evolution of adaptive variation in phenotypic traits in stable environments, and the role of plasticity in predictable changing environments, are well understood. Other aspects, such as the role of sex differences for evolution in spatially heterogeneous and temporally changing environments and dynamic fitness landscapes, remain elusive. An increased understanding of evolution requires that sex differences in development, physiology, morphology, life-history and behaviours are more broadly considered. Studies of selection should take into consideration that the relationships linking phenotypes to fitness may vary not only according to environmental conditions but also differ between males and females. Such opposing selection, sex-by-environment interaction effects of selection and sex-specific developmental plasticity can have consequences for population differentiation, local adaptations and for the dynamics of polymorphisms. Integrating sex differences in analytical frameworks and population comparisons can therefore illuminate neglected evolutionary drivers and reconcile unexpected patterns. Here, I illustrate these issues using empirical examples from over 20 years of research on colour polymorphic Tetrix subulata and Tetrix undulata pygmy grasshoppers, and summarize findings from observational field studies, manipulation experiments, common garden breeding experiments and population genetics studies. This article is part of the theme issue ‘Linking local adaptation with the evolution of sex differences’.
format Online
Article
Text
id pubmed-6125723
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-61257232018-09-13 On the role of sex differences for evolution in heterogeneous and changing fitness landscapes: insights from pygmy grasshoppers Forsman, Anders Philos Trans R Soc Lond B Biol Sci Articles Much research has been devoted to study evolution of local adaptations by natural selection, and to explore the roles of neutral processes and developmental plasticity for patterns of diversity among individuals, populations and species. Some aspects, such as evolution of adaptive variation in phenotypic traits in stable environments, and the role of plasticity in predictable changing environments, are well understood. Other aspects, such as the role of sex differences for evolution in spatially heterogeneous and temporally changing environments and dynamic fitness landscapes, remain elusive. An increased understanding of evolution requires that sex differences in development, physiology, morphology, life-history and behaviours are more broadly considered. Studies of selection should take into consideration that the relationships linking phenotypes to fitness may vary not only according to environmental conditions but also differ between males and females. Such opposing selection, sex-by-environment interaction effects of selection and sex-specific developmental plasticity can have consequences for population differentiation, local adaptations and for the dynamics of polymorphisms. Integrating sex differences in analytical frameworks and population comparisons can therefore illuminate neglected evolutionary drivers and reconcile unexpected patterns. Here, I illustrate these issues using empirical examples from over 20 years of research on colour polymorphic Tetrix subulata and Tetrix undulata pygmy grasshoppers, and summarize findings from observational field studies, manipulation experiments, common garden breeding experiments and population genetics studies. This article is part of the theme issue ‘Linking local adaptation with the evolution of sex differences’. The Royal Society 2018-10-05 2018-08-27 /pmc/articles/PMC6125723/ /pubmed/30150227 http://dx.doi.org/10.1098/rstb.2017.0429 Text en © 2018 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Articles
Forsman, Anders
On the role of sex differences for evolution in heterogeneous and changing fitness landscapes: insights from pygmy grasshoppers
title On the role of sex differences for evolution in heterogeneous and changing fitness landscapes: insights from pygmy grasshoppers
title_full On the role of sex differences for evolution in heterogeneous and changing fitness landscapes: insights from pygmy grasshoppers
title_fullStr On the role of sex differences for evolution in heterogeneous and changing fitness landscapes: insights from pygmy grasshoppers
title_full_unstemmed On the role of sex differences for evolution in heterogeneous and changing fitness landscapes: insights from pygmy grasshoppers
title_short On the role of sex differences for evolution in heterogeneous and changing fitness landscapes: insights from pygmy grasshoppers
title_sort on the role of sex differences for evolution in heterogeneous and changing fitness landscapes: insights from pygmy grasshoppers
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125723/
https://www.ncbi.nlm.nih.gov/pubmed/30150227
http://dx.doi.org/10.1098/rstb.2017.0429
work_keys_str_mv AT forsmananders ontheroleofsexdifferencesforevolutioninheterogeneousandchangingfitnesslandscapesinsightsfrompygmygrasshoppers