Cargando…
Deep Convolutional Neural Network Used in Single Sample per Person Face Recognition
Face recognition (FR) with single sample per person (SSPP) is a challenge in computer vision. Since there is only one sample to be trained, it makes facial variation such as pose, illumination, and disguise difficult to be predicted. To overcome this problem, this paper proposes a scheme combined tr...
Autores principales: | Zeng, Junying, Zhao, Xiaoxiao, Gan, Junying, Mai, Chaoyun, Zhai, Yikui, Wang, Fan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126063/ https://www.ncbi.nlm.nih.gov/pubmed/30210533 http://dx.doi.org/10.1155/2018/3803627 |
Ejemplares similares
-
Robust SAR Automatic Target Recognition Based on Transferred MS-CNN with L(2)-Regularization
por: Zhai, Yikui, et al.
Publicado: (2019) -
Application Research for Fusion Model of Pseudolabel and Cross Network
por: Gan, Junying, et al.
Publicado: (2022) -
BeautyNet: Joint Multiscale CNN and Transfer Learning Method for Unconstrained Facial Beauty Prediction
por: Zhai, Yikui, et al.
Publicado: (2019) -
Masked face recognition with convolutional neural networks and local binary patterns
por: Vu, Hoai Nam, et al.
Publicado: (2021) -
Image Generation Using Bidirectional Integral Features for Face Recognition with a Single Sample per Person
por: Lee, Yonggeol, et al.
Publicado: (2015)