Cargando…
Phosphoproteome data from abscisic acid and ethylene treated Glycine max leaves
The data reported here are associated with the article “Comparative phosphoproteome analysis upon ethylene and abscisic acid treatment in Glycine max leaves” [1]. Phosphorylation plays a critical role in the regulation of the biological activities of proteins. However, phosphorylation-mediated regul...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126080/ https://www.ncbi.nlm.nih.gov/pubmed/30191164 http://dx.doi.org/10.1016/j.dib.2018.08.037 |
Sumario: | The data reported here are associated with the article “Comparative phosphoproteome analysis upon ethylene and abscisic acid treatment in Glycine max leaves” [1]. Phosphorylation plays a critical role in the regulation of the biological activities of proteins. However, phosphorylation-mediated regulation of proteins and pathways involved in ethylene (ET) and abscisic acid (ABA) signaling is currently poorly understood. Therefore, we used a shotgun proteomics approach to identify the phosphopeptides and phosphoproteins in response to ET, ABA and combined ET+ABA treatments. Here, we present the Mass spectrometry, protein–protein interaction, Gene ontology and KEGG data associated with the ET and ABA signaling in soybean leaves [1]. |
---|