Cargando…

Optimization of Fluorescent Labeling for In Vivo Nanoimaging of Sarcomeres in the Mouse Heart

The present study was conducted to systematically investigate the optimal viral titer as well as the volume of the adenovirus vector (ADV) that expresses α-actinin-AcGFP in the Z-disks of myocytes in the left ventricle (LV) of mice. An injection of 10 μL ADV at viral titers of 2 to 4 × 10(11) viral...

Descripción completa

Detalles Bibliográficos
Autores principales: Kobirumaki-Shimozawa, Fuyu, Shimozawa, Togo, Oyama, Kotaro, Kushida, Yasuharu, Terui, Takako, Ishiwata, Shin'ichi, Fukuda, Norio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126089/
https://www.ncbi.nlm.nih.gov/pubmed/30211223
http://dx.doi.org/10.1155/2018/4349170
Descripción
Sumario:The present study was conducted to systematically investigate the optimal viral titer as well as the volume of the adenovirus vector (ADV) that expresses α-actinin-AcGFP in the Z-disks of myocytes in the left ventricle (LV) of mice. An injection of 10 μL ADV at viral titers of 2 to 4 × 10(11) viral particles per mL (VP/mL) into the LV epicardial surface consistently expressed α-actinin-AcGFP in myocytes in vivo, with the fraction of AcGFP-expressing myocytes at ~10%. Our analysis revealed that SL was ~1.90-2.15 μm upon heart arrest via deep anesthesia. Likewise, we developed a novel fluorescence labeling method of the T-tubular system by treating the LV surface with CellMask Orange (CellMask). We found that the T-tubular distance was ~2.10-2.25 μm, similar to SL, in the healthy heart in vivo. Therefore, the present high-precision visualization method for the Z-disks or the T-tubules is beneficial to unveiling the mechanisms of myocyte contraction in health and disease in vivo.