Cargando…

MCR-1 Confers Cross-Resistance to Bacitracin, a Widely Used In-Feed Antibiotic

Extensive use of colistin in food animals is deemed a major driving force for the emergence and transmission of mcr-1. However, a non-colistin usage factor(s) contributing to mobile colistin resistance may also exist in animal production systems. Given that polymyxin, a bacterium-derived peptide ant...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Fuzhou, Zeng, Ximin, Hinenoya, Atsushi, Lin, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126145/
https://www.ncbi.nlm.nih.gov/pubmed/30185515
http://dx.doi.org/10.1128/mSphere.00411-18
_version_ 1783353286470926336
author Xu, Fuzhou
Zeng, Ximin
Hinenoya, Atsushi
Lin, Jun
author_facet Xu, Fuzhou
Zeng, Ximin
Hinenoya, Atsushi
Lin, Jun
author_sort Xu, Fuzhou
collection PubMed
description Extensive use of colistin in food animals is deemed a major driving force for the emergence and transmission of mcr-1. However, a non-colistin usage factor(s) contributing to mobile colistin resistance may also exist in animal production systems. Given that polymyxin, a bacterium-derived peptide antibiotic, has been successfully used as a surrogate to study bacterial resistance to antimicrobial peptides (AMPs), acquisition of MCR-1 may confer cross-resistance to the unrelated AMPs implicated in practical applications. To test this, we first constructed Escherichia coli recombinant strains differing only in the presence or absence of functional MCR-1. Among diverse tested AMPs, MCR-1 was observed to confer cross-resistance to bacitracin, an in-feed antibiotic widely used in animal industry. The significantly (2-fold) increased bacitracin MIC was confirmed by using different bacitracin products, broth media, and laboratory host strains for susceptibility tests. Subsequently, an original mcr-1 gene-bearing plasmid, pSLy21, was conjugatively transferred to eight clinical E. coli recipient strains isolated from diarrheic pigs, which also led to significantly increased MICs of both colistin (4-fold to 8-fold) and bacitracin (2-fold). Growth curve examination further demonstrated that MCR-1 provides a growth advantage to various E. coli strains in the presence of bacitracin. Given that bacitracin, a feed additive displaying low absorption in the intestine, can be used in food animals with no withdrawal required, imprudent use of bacitracin in food animals may serve as a risk factor to enhance the ecological fitness of MCR-1-positive E. coli strains, consequently facilitating the persistence and transmission of plasmid-mediated colistin resistance in agricultural ecosystem. IMPORTANCE Polymyxins (e.g., colistin) are the drugs of last resort to treat multidrug-resistant infections in humans. To control mobile colistin resistance, there is a worldwide trend to limit colistin use in animal production. However, simply limiting colistin use in animal production may still not effectively mitigate colistin resistance due to an overlooked non-colistin usage factor(s). Using controlled systems, in this study, we observed that MCR-1 confers cross-resistance to bacitracin, a popular in-feed antibiotic used in food animals. Thus, imprudent and extensive usage of bacitracin in food animals may serve as a non-colistin usage risk factor for the transmissible colistin resistance. Further comprehensive in vitro and in vivo studies are highly warranted to generate science-based information for risk assessment and risk management of colistin resistance, consequently facilitating the development of proactive and effective strategies to mitigate colistin resistance in animal production system and protect public health.
format Online
Article
Text
id pubmed-6126145
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-61261452018-09-07 MCR-1 Confers Cross-Resistance to Bacitracin, a Widely Used In-Feed Antibiotic Xu, Fuzhou Zeng, Ximin Hinenoya, Atsushi Lin, Jun mSphere Observation Extensive use of colistin in food animals is deemed a major driving force for the emergence and transmission of mcr-1. However, a non-colistin usage factor(s) contributing to mobile colistin resistance may also exist in animal production systems. Given that polymyxin, a bacterium-derived peptide antibiotic, has been successfully used as a surrogate to study bacterial resistance to antimicrobial peptides (AMPs), acquisition of MCR-1 may confer cross-resistance to the unrelated AMPs implicated in practical applications. To test this, we first constructed Escherichia coli recombinant strains differing only in the presence or absence of functional MCR-1. Among diverse tested AMPs, MCR-1 was observed to confer cross-resistance to bacitracin, an in-feed antibiotic widely used in animal industry. The significantly (2-fold) increased bacitracin MIC was confirmed by using different bacitracin products, broth media, and laboratory host strains for susceptibility tests. Subsequently, an original mcr-1 gene-bearing plasmid, pSLy21, was conjugatively transferred to eight clinical E. coli recipient strains isolated from diarrheic pigs, which also led to significantly increased MICs of both colistin (4-fold to 8-fold) and bacitracin (2-fold). Growth curve examination further demonstrated that MCR-1 provides a growth advantage to various E. coli strains in the presence of bacitracin. Given that bacitracin, a feed additive displaying low absorption in the intestine, can be used in food animals with no withdrawal required, imprudent use of bacitracin in food animals may serve as a risk factor to enhance the ecological fitness of MCR-1-positive E. coli strains, consequently facilitating the persistence and transmission of plasmid-mediated colistin resistance in agricultural ecosystem. IMPORTANCE Polymyxins (e.g., colistin) are the drugs of last resort to treat multidrug-resistant infections in humans. To control mobile colistin resistance, there is a worldwide trend to limit colistin use in animal production. However, simply limiting colistin use in animal production may still not effectively mitigate colistin resistance due to an overlooked non-colistin usage factor(s). Using controlled systems, in this study, we observed that MCR-1 confers cross-resistance to bacitracin, a popular in-feed antibiotic used in food animals. Thus, imprudent and extensive usage of bacitracin in food animals may serve as a non-colistin usage risk factor for the transmissible colistin resistance. Further comprehensive in vitro and in vivo studies are highly warranted to generate science-based information for risk assessment and risk management of colistin resistance, consequently facilitating the development of proactive and effective strategies to mitigate colistin resistance in animal production system and protect public health. American Society for Microbiology 2018-09-05 /pmc/articles/PMC6126145/ /pubmed/30185515 http://dx.doi.org/10.1128/mSphere.00411-18 Text en Copyright © 2018 Xu et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Observation
Xu, Fuzhou
Zeng, Ximin
Hinenoya, Atsushi
Lin, Jun
MCR-1 Confers Cross-Resistance to Bacitracin, a Widely Used In-Feed Antibiotic
title MCR-1 Confers Cross-Resistance to Bacitracin, a Widely Used In-Feed Antibiotic
title_full MCR-1 Confers Cross-Resistance to Bacitracin, a Widely Used In-Feed Antibiotic
title_fullStr MCR-1 Confers Cross-Resistance to Bacitracin, a Widely Used In-Feed Antibiotic
title_full_unstemmed MCR-1 Confers Cross-Resistance to Bacitracin, a Widely Used In-Feed Antibiotic
title_short MCR-1 Confers Cross-Resistance to Bacitracin, a Widely Used In-Feed Antibiotic
title_sort mcr-1 confers cross-resistance to bacitracin, a widely used in-feed antibiotic
topic Observation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126145/
https://www.ncbi.nlm.nih.gov/pubmed/30185515
http://dx.doi.org/10.1128/mSphere.00411-18
work_keys_str_mv AT xufuzhou mcr1conferscrossresistancetobacitracinawidelyusedinfeedantibiotic
AT zengximin mcr1conferscrossresistancetobacitracinawidelyusedinfeedantibiotic
AT hinenoyaatsushi mcr1conferscrossresistancetobacitracinawidelyusedinfeedantibiotic
AT linjun mcr1conferscrossresistancetobacitracinawidelyusedinfeedantibiotic