Cargando…

Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging

Diffraction before destruction using X-ray free-electron lasers (XFELs) has the potential to determine radiation-damage-free structures without the need for crystallization. This article presents the three-dimensional reconstruction of the Melbournevirus from single-particle X-ray diffraction patter...

Descripción completa

Detalles Bibliográficos
Autores principales: Lundholm, Ida V., Sellberg, Jonas A., Ekeberg, Tomas, Hantke, Max F., Okamoto, Kenta, van der Schot, Gijs, Andreasson, Jakob, Barty, Anton, Bielecki, Johan, Bruza, Petr, Bucher, Max, Carron, Sebastian, Daurer, Benedikt J., Ferguson, Ken, Hasse, Dirk, Krzywinski, Jacek, Larsson, Daniel S. D., Morgan, Andrew, Mühlig, Kerstin, Müller, Maria, Nettelblad, Carl, Pietrini, Alberto, Reddy, Hemanth K. N., Rupp, Daniela, Sauppe, Mario, Seibert, Marvin, Svenda, Martin, Swiggers, Michelle, Timneanu, Nicusor, Ulmer, Anatoli, Westphal, Daniel, Williams, Garth, Zani, Alessandro, Faigel, Gyula, Chapman, Henry N., Möller, Thomas, Bostedt, Christoph, Hajdu, Janos, Gorkhover, Tais, Maia, Filipe R. N. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126651/
https://www.ncbi.nlm.nih.gov/pubmed/30224956
http://dx.doi.org/10.1107/S2052252518010047
_version_ 1783353355108614144
author Lundholm, Ida V.
Sellberg, Jonas A.
Ekeberg, Tomas
Hantke, Max F.
Okamoto, Kenta
van der Schot, Gijs
Andreasson, Jakob
Barty, Anton
Bielecki, Johan
Bruza, Petr
Bucher, Max
Carron, Sebastian
Daurer, Benedikt J.
Ferguson, Ken
Hasse, Dirk
Krzywinski, Jacek
Larsson, Daniel S. D.
Morgan, Andrew
Mühlig, Kerstin
Müller, Maria
Nettelblad, Carl
Pietrini, Alberto
Reddy, Hemanth K. N.
Rupp, Daniela
Sauppe, Mario
Seibert, Marvin
Svenda, Martin
Swiggers, Michelle
Timneanu, Nicusor
Ulmer, Anatoli
Westphal, Daniel
Williams, Garth
Zani, Alessandro
Faigel, Gyula
Chapman, Henry N.
Möller, Thomas
Bostedt, Christoph
Hajdu, Janos
Gorkhover, Tais
Maia, Filipe R. N. C.
author_facet Lundholm, Ida V.
Sellberg, Jonas A.
Ekeberg, Tomas
Hantke, Max F.
Okamoto, Kenta
van der Schot, Gijs
Andreasson, Jakob
Barty, Anton
Bielecki, Johan
Bruza, Petr
Bucher, Max
Carron, Sebastian
Daurer, Benedikt J.
Ferguson, Ken
Hasse, Dirk
Krzywinski, Jacek
Larsson, Daniel S. D.
Morgan, Andrew
Mühlig, Kerstin
Müller, Maria
Nettelblad, Carl
Pietrini, Alberto
Reddy, Hemanth K. N.
Rupp, Daniela
Sauppe, Mario
Seibert, Marvin
Svenda, Martin
Swiggers, Michelle
Timneanu, Nicusor
Ulmer, Anatoli
Westphal, Daniel
Williams, Garth
Zani, Alessandro
Faigel, Gyula
Chapman, Henry N.
Möller, Thomas
Bostedt, Christoph
Hajdu, Janos
Gorkhover, Tais
Maia, Filipe R. N. C.
author_sort Lundholm, Ida V.
collection PubMed
description Diffraction before destruction using X-ray free-electron lasers (XFELs) has the potential to determine radiation-damage-free structures without the need for crystallization. This article presents the three-dimensional reconstruction of the Melbournevirus from single-particle X-ray diffraction patterns collected at the LINAC Coherent Light Source (LCLS) as well as reconstructions from simulated data exploring the consequences of different kinds of experimental sources of noise. The reconstruction from experimental data suffers from a strong artifact in the center of the particle. This could be reproduced with simulated data by adding experimental background to the diffraction patterns. In those simulations, the relative density of the artifact increases linearly with background strength. This suggests that the artifact originates from the Fourier transform of the relatively flat background, concentrating all power in a central feature of limited extent. We support these findings by significantly reducing the artifact through background removal before the phase-retrieval step. Large amounts of blurring in the diffraction patterns were also found to introduce diffuse artifacts, which could easily be mistaken as biologically relevant features. Other sources of noise such as sample heterogeneity and variation of pulse energy did not significantly degrade the quality of the reconstructions. Larger data volumes, made possible by the recent inauguration of high repetition-rate XFELs, allow for increased signal-to-background ratio and provide a way to minimize these artifacts. The anticipated development of three-dimensional Fourier-volume-assembly algorithms which are background aware is an alternative and complementary solution, which maximizes the use of data.
format Online
Article
Text
id pubmed-6126651
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher International Union of Crystallography
record_format MEDLINE/PubMed
spelling pubmed-61266512018-09-17 Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging Lundholm, Ida V. Sellberg, Jonas A. Ekeberg, Tomas Hantke, Max F. Okamoto, Kenta van der Schot, Gijs Andreasson, Jakob Barty, Anton Bielecki, Johan Bruza, Petr Bucher, Max Carron, Sebastian Daurer, Benedikt J. Ferguson, Ken Hasse, Dirk Krzywinski, Jacek Larsson, Daniel S. D. Morgan, Andrew Mühlig, Kerstin Müller, Maria Nettelblad, Carl Pietrini, Alberto Reddy, Hemanth K. N. Rupp, Daniela Sauppe, Mario Seibert, Marvin Svenda, Martin Swiggers, Michelle Timneanu, Nicusor Ulmer, Anatoli Westphal, Daniel Williams, Garth Zani, Alessandro Faigel, Gyula Chapman, Henry N. Möller, Thomas Bostedt, Christoph Hajdu, Janos Gorkhover, Tais Maia, Filipe R. N. C. IUCrJ Research Papers Diffraction before destruction using X-ray free-electron lasers (XFELs) has the potential to determine radiation-damage-free structures without the need for crystallization. This article presents the three-dimensional reconstruction of the Melbournevirus from single-particle X-ray diffraction patterns collected at the LINAC Coherent Light Source (LCLS) as well as reconstructions from simulated data exploring the consequences of different kinds of experimental sources of noise. The reconstruction from experimental data suffers from a strong artifact in the center of the particle. This could be reproduced with simulated data by adding experimental background to the diffraction patterns. In those simulations, the relative density of the artifact increases linearly with background strength. This suggests that the artifact originates from the Fourier transform of the relatively flat background, concentrating all power in a central feature of limited extent. We support these findings by significantly reducing the artifact through background removal before the phase-retrieval step. Large amounts of blurring in the diffraction patterns were also found to introduce diffuse artifacts, which could easily be mistaken as biologically relevant features. Other sources of noise such as sample heterogeneity and variation of pulse energy did not significantly degrade the quality of the reconstructions. Larger data volumes, made possible by the recent inauguration of high repetition-rate XFELs, allow for increased signal-to-background ratio and provide a way to minimize these artifacts. The anticipated development of three-dimensional Fourier-volume-assembly algorithms which are background aware is an alternative and complementary solution, which maximizes the use of data. International Union of Crystallography 2018-09-01 /pmc/articles/PMC6126651/ /pubmed/30224956 http://dx.doi.org/10.1107/S2052252518010047 Text en © Ida V. Lundholm et al. 2018 http://creativecommons.org/licenses/by/2.0/uk/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/2.0/uk/
spellingShingle Research Papers
Lundholm, Ida V.
Sellberg, Jonas A.
Ekeberg, Tomas
Hantke, Max F.
Okamoto, Kenta
van der Schot, Gijs
Andreasson, Jakob
Barty, Anton
Bielecki, Johan
Bruza, Petr
Bucher, Max
Carron, Sebastian
Daurer, Benedikt J.
Ferguson, Ken
Hasse, Dirk
Krzywinski, Jacek
Larsson, Daniel S. D.
Morgan, Andrew
Mühlig, Kerstin
Müller, Maria
Nettelblad, Carl
Pietrini, Alberto
Reddy, Hemanth K. N.
Rupp, Daniela
Sauppe, Mario
Seibert, Marvin
Svenda, Martin
Swiggers, Michelle
Timneanu, Nicusor
Ulmer, Anatoli
Westphal, Daniel
Williams, Garth
Zani, Alessandro
Faigel, Gyula
Chapman, Henry N.
Möller, Thomas
Bostedt, Christoph
Hajdu, Janos
Gorkhover, Tais
Maia, Filipe R. N. C.
Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging
title Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging
title_full Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging
title_fullStr Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging
title_full_unstemmed Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging
title_short Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging
title_sort considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126651/
https://www.ncbi.nlm.nih.gov/pubmed/30224956
http://dx.doi.org/10.1107/S2052252518010047
work_keys_str_mv AT lundholmidav considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT sellbergjonasa considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT ekebergtomas considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT hantkemaxf considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT okamotokenta considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT vanderschotgijs considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT andreassonjakob considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT bartyanton considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT bieleckijohan considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT bruzapetr considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT buchermax considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT carronsebastian considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT daurerbenediktj considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT fergusonken considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT hassedirk considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT krzywinskijacek considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT larssondanielsd considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT morganandrew considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT muhligkerstin considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT mullermaria considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT nettelbladcarl considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT pietrinialberto considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT reddyhemanthkn considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT ruppdaniela considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT sauppemario considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT seibertmarvin considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT svendamartin considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT swiggersmichelle considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT timneanunicusor considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT ulmeranatoli considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT westphaldaniel considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT williamsgarth considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT zanialessandro considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT faigelgyula considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT chapmanhenryn considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT mollerthomas considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT bostedtchristoph considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT hajdujanos considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT gorkhovertais considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging
AT maiafilipernc considerationsforthreedimensionalimagereconstructionfromexperimentaldataincoherentdiffractiveimaging