Cargando…

Evaluation of potential effects of Plastin 3 overexpression and low-dose SMN-antisense oligonucleotides on putative biomarkers in spinal muscular atrophy mice

OBJECTIVES: Spinal muscular atrophy (SMA) is a devastating motor neuron disorder caused by homozygous loss of the survival motor neuron 1 (SMN1) gene and insufficient functional SMN protein produced by the SMN2 copy gene. Additional genetic protective modifiers such as Plastin 3 (PLS3) can counterac...

Descripción completa

Detalles Bibliográficos
Autores principales: Strathmann, Eike A., Peters, Miriam, Hosseinibarkooie, Seyyedmohsen, Rigo, Frank W., Bennett, C. Frank, Zaworski, Phillip G., Chen, Karen S., Nothnagel, Michael, Wirth, Brunhilde
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126849/
https://www.ncbi.nlm.nih.gov/pubmed/30188931
http://dx.doi.org/10.1371/journal.pone.0203398
_version_ 1783353381155241984
author Strathmann, Eike A.
Peters, Miriam
Hosseinibarkooie, Seyyedmohsen
Rigo, Frank W.
Bennett, C. Frank
Zaworski, Phillip G.
Chen, Karen S.
Nothnagel, Michael
Wirth, Brunhilde
author_facet Strathmann, Eike A.
Peters, Miriam
Hosseinibarkooie, Seyyedmohsen
Rigo, Frank W.
Bennett, C. Frank
Zaworski, Phillip G.
Chen, Karen S.
Nothnagel, Michael
Wirth, Brunhilde
author_sort Strathmann, Eike A.
collection PubMed
description OBJECTIVES: Spinal muscular atrophy (SMA) is a devastating motor neuron disorder caused by homozygous loss of the survival motor neuron 1 (SMN1) gene and insufficient functional SMN protein produced by the SMN2 copy gene. Additional genetic protective modifiers such as Plastin 3 (PLS3) can counteract SMA pathology despite insufficient SMN protein. Recently, Spinraza, an SMN antisense oligonucleotide (ASO) that restores full-length SMN2 transcripts, has been FDA- and EMA-approved for SMA therapy. Hence, the availability of biomarkers allowing a reliable monitoring of disease and therapy progression would be of great importance. Our objectives were (i) to analyse the feasibility of SMN and of six SMA biomarkers identified by the BforSMA study in the Taiwanese SMA mouse model, (ii) to analyse the effect of PLS3 overexpression on these biomarkers, and (iii) to assess the impact of low-dose SMN-ASO therapy on the level of SMN and the six biomarkers. METHODS: At P10 and P21, the level of SMN and six putative biomarkers were compared among SMA, heterozygous and wild type mice, with or without PLS3 overexpression, and with or without presymptomatic low-dose SMN-ASO subcutaneous injection. SMN levels were measured in whole blood by ECL immunoassay and of six SMA putative biomarkers, namely Cartilage Oligomeric Matrix Protein (COMP), Dipeptidyl Peptidase 4 (DPP4), Tetranectin (C-type Lectin Family 3 Member B, CLEC3B), Osteopontin (Secreted Phosphoprotein 1, SPP1), Vitronectin (VTN) and Fetuin A (Alpha 2-HS Glycoprotein, AHSG) in plasma. RESULTS: SMN levels were significantly discernible between SMA, heterozygous and wild type mice. However, no significant differences were measured upon low-dose SMN-ASO treatment compared to untreated animals. Of the six biomarkers, only COMP and DPP4 showed high and SPP1 moderate correlation with the SMA phenotype. PLS3 overexpression neither influenced the SMN level nor the six biomarkers, supporting the hypothesis that PLS3 acts as an independent protective modifier.
format Online
Article
Text
id pubmed-6126849
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-61268492018-09-15 Evaluation of potential effects of Plastin 3 overexpression and low-dose SMN-antisense oligonucleotides on putative biomarkers in spinal muscular atrophy mice Strathmann, Eike A. Peters, Miriam Hosseinibarkooie, Seyyedmohsen Rigo, Frank W. Bennett, C. Frank Zaworski, Phillip G. Chen, Karen S. Nothnagel, Michael Wirth, Brunhilde PLoS One Research Article OBJECTIVES: Spinal muscular atrophy (SMA) is a devastating motor neuron disorder caused by homozygous loss of the survival motor neuron 1 (SMN1) gene and insufficient functional SMN protein produced by the SMN2 copy gene. Additional genetic protective modifiers such as Plastin 3 (PLS3) can counteract SMA pathology despite insufficient SMN protein. Recently, Spinraza, an SMN antisense oligonucleotide (ASO) that restores full-length SMN2 transcripts, has been FDA- and EMA-approved for SMA therapy. Hence, the availability of biomarkers allowing a reliable monitoring of disease and therapy progression would be of great importance. Our objectives were (i) to analyse the feasibility of SMN and of six SMA biomarkers identified by the BforSMA study in the Taiwanese SMA mouse model, (ii) to analyse the effect of PLS3 overexpression on these biomarkers, and (iii) to assess the impact of low-dose SMN-ASO therapy on the level of SMN and the six biomarkers. METHODS: At P10 and P21, the level of SMN and six putative biomarkers were compared among SMA, heterozygous and wild type mice, with or without PLS3 overexpression, and with or without presymptomatic low-dose SMN-ASO subcutaneous injection. SMN levels were measured in whole blood by ECL immunoassay and of six SMA putative biomarkers, namely Cartilage Oligomeric Matrix Protein (COMP), Dipeptidyl Peptidase 4 (DPP4), Tetranectin (C-type Lectin Family 3 Member B, CLEC3B), Osteopontin (Secreted Phosphoprotein 1, SPP1), Vitronectin (VTN) and Fetuin A (Alpha 2-HS Glycoprotein, AHSG) in plasma. RESULTS: SMN levels were significantly discernible between SMA, heterozygous and wild type mice. However, no significant differences were measured upon low-dose SMN-ASO treatment compared to untreated animals. Of the six biomarkers, only COMP and DPP4 showed high and SPP1 moderate correlation with the SMA phenotype. PLS3 overexpression neither influenced the SMN level nor the six biomarkers, supporting the hypothesis that PLS3 acts as an independent protective modifier. Public Library of Science 2018-09-06 /pmc/articles/PMC6126849/ /pubmed/30188931 http://dx.doi.org/10.1371/journal.pone.0203398 Text en © 2018 Strathmann et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Strathmann, Eike A.
Peters, Miriam
Hosseinibarkooie, Seyyedmohsen
Rigo, Frank W.
Bennett, C. Frank
Zaworski, Phillip G.
Chen, Karen S.
Nothnagel, Michael
Wirth, Brunhilde
Evaluation of potential effects of Plastin 3 overexpression and low-dose SMN-antisense oligonucleotides on putative biomarkers in spinal muscular atrophy mice
title Evaluation of potential effects of Plastin 3 overexpression and low-dose SMN-antisense oligonucleotides on putative biomarkers in spinal muscular atrophy mice
title_full Evaluation of potential effects of Plastin 3 overexpression and low-dose SMN-antisense oligonucleotides on putative biomarkers in spinal muscular atrophy mice
title_fullStr Evaluation of potential effects of Plastin 3 overexpression and low-dose SMN-antisense oligonucleotides on putative biomarkers in spinal muscular atrophy mice
title_full_unstemmed Evaluation of potential effects of Plastin 3 overexpression and low-dose SMN-antisense oligonucleotides on putative biomarkers in spinal muscular atrophy mice
title_short Evaluation of potential effects of Plastin 3 overexpression and low-dose SMN-antisense oligonucleotides on putative biomarkers in spinal muscular atrophy mice
title_sort evaluation of potential effects of plastin 3 overexpression and low-dose smn-antisense oligonucleotides on putative biomarkers in spinal muscular atrophy mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126849/
https://www.ncbi.nlm.nih.gov/pubmed/30188931
http://dx.doi.org/10.1371/journal.pone.0203398
work_keys_str_mv AT strathmanneikea evaluationofpotentialeffectsofplastin3overexpressionandlowdosesmnantisenseoligonucleotidesonputativebiomarkersinspinalmuscularatrophymice
AT petersmiriam evaluationofpotentialeffectsofplastin3overexpressionandlowdosesmnantisenseoligonucleotidesonputativebiomarkersinspinalmuscularatrophymice
AT hosseinibarkooieseyyedmohsen evaluationofpotentialeffectsofplastin3overexpressionandlowdosesmnantisenseoligonucleotidesonputativebiomarkersinspinalmuscularatrophymice
AT rigofrankw evaluationofpotentialeffectsofplastin3overexpressionandlowdosesmnantisenseoligonucleotidesonputativebiomarkersinspinalmuscularatrophymice
AT bennettcfrank evaluationofpotentialeffectsofplastin3overexpressionandlowdosesmnantisenseoligonucleotidesonputativebiomarkersinspinalmuscularatrophymice
AT zaworskiphillipg evaluationofpotentialeffectsofplastin3overexpressionandlowdosesmnantisenseoligonucleotidesonputativebiomarkersinspinalmuscularatrophymice
AT chenkarens evaluationofpotentialeffectsofplastin3overexpressionandlowdosesmnantisenseoligonucleotidesonputativebiomarkersinspinalmuscularatrophymice
AT nothnagelmichael evaluationofpotentialeffectsofplastin3overexpressionandlowdosesmnantisenseoligonucleotidesonputativebiomarkersinspinalmuscularatrophymice
AT wirthbrunhilde evaluationofpotentialeffectsofplastin3overexpressionandlowdosesmnantisenseoligonucleotidesonputativebiomarkersinspinalmuscularatrophymice