Cargando…
MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction
Recently, a growing number of biological research and scientific experiments have demonstrated that microRNA (miRNA) affects the development of human complex diseases. Discovering miRNA-disease associations plays an increasingly vital role in devising diagnostic and therapeutic tools for diseases. H...
Autores principales: | Chen, Xing, Yin, Jun, Qu, Jia, Huang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126877/ https://www.ncbi.nlm.nih.gov/pubmed/30142158 http://dx.doi.org/10.1371/journal.pcbi.1006418 |
Ejemplares similares
-
HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction
por: Chen, Xing, et al.
Publicado: (2016) -
TLHNMDA: Triple Layer Heterogeneous Network Based Inference for MiRNA-Disease Association Prediction
por: Chen, Xing, et al.
Publicado: (2018) -
Heterogeneous Graph Convolutional Networks and Matrix Completion for miRNA-Disease Association Prediction
por: Zhu, Rongxiang, et al.
Publicado: (2020) -
Heterogeneous graph inference based on similarity network fusion for predicting lncRNA–miRNA interaction
por: Fan, Yongxian, et al.
Publicado: (2020) -
Identifying SM-miRNA associations based on layer attention graph convolutional network and matrix decomposition
por: Ni, Jie, et al.
Publicado: (2022)