Cargando…
Variation graph toolkit improves read mapping by representing genetic variation in the reference
Reference genomes guide our interpretation of DNA sequence data. However, conventional linear references represent only one version of each locus, ignoring variation in the population. Poor representation of an individual’s genome sequence impacts read mapping and introduces bias. Variation graphs a...
Autores principales: | Garrison, Erik, Sirén, Jouni, Novak, Adam M., Hickey, Glenn, Eizenga, Jordan M., Dawson, Eric T., Jones, William, Garg, Shilpa, Markello, Charles, Lin, Michael F., Paten, Benedict, Durbin, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126949/ https://www.ncbi.nlm.nih.gov/pubmed/30125266 http://dx.doi.org/10.1038/nbt.4227 |
Ejemplares similares
-
Genotyping structural variants in pangenome graphs using the vg toolkit
por: Hickey, Glenn, et al.
Publicado: (2020) -
Haplotype-aware graph indexes
por: Sirén, Jouni, et al.
Publicado: (2019) -
Modelling haplotypes with respect to reference cohort variation graphs
por: Rosen, Yohei, et al.
Publicado: (2017) -
Distance indexing and seed clustering in sequence graphs
por: Chang, Xian, et al.
Publicado: (2020) -
Genome graphs and the evolution of genome inference
por: Paten, Benedict, et al.
Publicado: (2017)