Cargando…
Imaging Melanin Distribution in the Zebrafish Retina Using Photothermal Optical Coherence Tomography
PURPOSE: To demonstrate and validate that photothermal optical coherence tomography (PT-OCT) can image melanin in the retinal pigment epithelium (RPE) and can observe light-driven melanosome translocation in the zebrafish retina. METHODS: A commercial spectral domain OCT system was modified to perfo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126953/ https://www.ncbi.nlm.nih.gov/pubmed/30197836 http://dx.doi.org/10.1167/tvst.7.5.4 |
_version_ | 1783353393214914560 |
---|---|
author | Lapierre-Landry, Maryse Huckenpahler, Alison L. Link, Brian A. Collery, Ross F. Carroll, Joseph Skala, Melissa C. |
author_facet | Lapierre-Landry, Maryse Huckenpahler, Alison L. Link, Brian A. Collery, Ross F. Carroll, Joseph Skala, Melissa C. |
author_sort | Lapierre-Landry, Maryse |
collection | PubMed |
description | PURPOSE: To demonstrate and validate that photothermal optical coherence tomography (PT-OCT) can image melanin in the retinal pigment epithelium (RPE) and can observe light-driven melanosome translocation in the zebrafish retina. METHODS: A commercial spectral domain OCT system was modified to perform both OCT and PT-OCT. Four adult tyrosinase-mosaic zebrafish with varying levels of melanin expression across their retinas were imaged, and the PT-OCT signal for pigmented and nonpigmented regions were compared. Wild-type dark-adapted (n = 11 fish) and light-adapted (n = 10 fish) zebrafish were also imaged with OCT and PT-OCT. Longitudinal reflectivity and absorption profiles were generated from B-scans to compare the melanin distribution between the two groups. RESULTS: A significant increase in PT-OCT signal (P < 0.0001, Student's t-test) was observed in pigmented regions of interest (ROI) compared to nonpigmented ROIs in the tyrosinase-mosaic zebrafish, which confirms the PT-OCT signal is specific to melanin in the eye. A significant increase in PT-OCT signal intensity (P < 0.0001, Student's t-test) was also detected in the light-adapted wild-type zebrafish group compared to the dark-adapted group. Additionally, light-adapted zebrafish display more distinct melanin banding patterns than do dark-adapted zebrafish in PT-OCT B-scans. CONCLUSIONS: PT-OCT can detect different levels of melanin absorption and characterize pigment distribution in the zebrafish retina, including intracellular changes due to light-driven melanosome translocation within the RPE. TRANSLATIONAL RELEVANCE: PT-OCT could quantify changes in pigmentation that occur in retinal diseases. The functional information provided by PT-OCT may also enable a better understanding of the anatomical features within conventional OCT images. |
format | Online Article Text |
id | pubmed-6126953 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-61269532018-09-07 Imaging Melanin Distribution in the Zebrafish Retina Using Photothermal Optical Coherence Tomography Lapierre-Landry, Maryse Huckenpahler, Alison L. Link, Brian A. Collery, Ross F. Carroll, Joseph Skala, Melissa C. Transl Vis Sci Technol Articles PURPOSE: To demonstrate and validate that photothermal optical coherence tomography (PT-OCT) can image melanin in the retinal pigment epithelium (RPE) and can observe light-driven melanosome translocation in the zebrafish retina. METHODS: A commercial spectral domain OCT system was modified to perform both OCT and PT-OCT. Four adult tyrosinase-mosaic zebrafish with varying levels of melanin expression across their retinas were imaged, and the PT-OCT signal for pigmented and nonpigmented regions were compared. Wild-type dark-adapted (n = 11 fish) and light-adapted (n = 10 fish) zebrafish were also imaged with OCT and PT-OCT. Longitudinal reflectivity and absorption profiles were generated from B-scans to compare the melanin distribution between the two groups. RESULTS: A significant increase in PT-OCT signal (P < 0.0001, Student's t-test) was observed in pigmented regions of interest (ROI) compared to nonpigmented ROIs in the tyrosinase-mosaic zebrafish, which confirms the PT-OCT signal is specific to melanin in the eye. A significant increase in PT-OCT signal intensity (P < 0.0001, Student's t-test) was also detected in the light-adapted wild-type zebrafish group compared to the dark-adapted group. Additionally, light-adapted zebrafish display more distinct melanin banding patterns than do dark-adapted zebrafish in PT-OCT B-scans. CONCLUSIONS: PT-OCT can detect different levels of melanin absorption and characterize pigment distribution in the zebrafish retina, including intracellular changes due to light-driven melanosome translocation within the RPE. TRANSLATIONAL RELEVANCE: PT-OCT could quantify changes in pigmentation that occur in retinal diseases. The functional information provided by PT-OCT may also enable a better understanding of the anatomical features within conventional OCT images. The Association for Research in Vision and Ophthalmology 2018-09-04 /pmc/articles/PMC6126953/ /pubmed/30197836 http://dx.doi.org/10.1167/tvst.7.5.4 Text en Copyright 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Articles Lapierre-Landry, Maryse Huckenpahler, Alison L. Link, Brian A. Collery, Ross F. Carroll, Joseph Skala, Melissa C. Imaging Melanin Distribution in the Zebrafish Retina Using Photothermal Optical Coherence Tomography |
title | Imaging Melanin Distribution in the Zebrafish Retina Using Photothermal Optical Coherence Tomography |
title_full | Imaging Melanin Distribution in the Zebrafish Retina Using Photothermal Optical Coherence Tomography |
title_fullStr | Imaging Melanin Distribution in the Zebrafish Retina Using Photothermal Optical Coherence Tomography |
title_full_unstemmed | Imaging Melanin Distribution in the Zebrafish Retina Using Photothermal Optical Coherence Tomography |
title_short | Imaging Melanin Distribution in the Zebrafish Retina Using Photothermal Optical Coherence Tomography |
title_sort | imaging melanin distribution in the zebrafish retina using photothermal optical coherence tomography |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126953/ https://www.ncbi.nlm.nih.gov/pubmed/30197836 http://dx.doi.org/10.1167/tvst.7.5.4 |
work_keys_str_mv | AT lapierrelandrymaryse imagingmelanindistributioninthezebrafishretinausingphotothermalopticalcoherencetomography AT huckenpahleralisonl imagingmelanindistributioninthezebrafishretinausingphotothermalopticalcoherencetomography AT linkbriana imagingmelanindistributioninthezebrafishretinausingphotothermalopticalcoherencetomography AT colleryrossf imagingmelanindistributioninthezebrafishretinausingphotothermalopticalcoherencetomography AT carrolljoseph imagingmelanindistributioninthezebrafishretinausingphotothermalopticalcoherencetomography AT skalamelissac imagingmelanindistributioninthezebrafishretinausingphotothermalopticalcoherencetomography |