Cargando…
Predicting IDH genotype in gliomas using FET PET radiomics
Mutations in the isocitrate dehydrogenase (IDH mut) gene have gained paramount importance for the prognosis of glioma patients. To date, reliable techniques for a preoperative evaluation of IDH genotype remain scarce. Therefore, we investigated the potential of O-(2-[(18)F]fluoroethyl)-L-tyrosine (F...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127131/ https://www.ncbi.nlm.nih.gov/pubmed/30190592 http://dx.doi.org/10.1038/s41598-018-31806-7 |
_version_ | 1783353413535268864 |
---|---|
author | Lohmann, Philipp Lerche, Christoph Bauer, Elena K. Steger, Jan Stoffels, Gabriele Blau, Tobias Dunkl, Veronika Kocher, Martin Viswanathan, Shivakumar Filss, Christian P. Stegmayr, Carina Ruge, Maximillian I. Neumaier, Bernd Shah, Nadim J. Fink, Gereon R. Langen, Karl-Josef Galldiks, Norbert |
author_facet | Lohmann, Philipp Lerche, Christoph Bauer, Elena K. Steger, Jan Stoffels, Gabriele Blau, Tobias Dunkl, Veronika Kocher, Martin Viswanathan, Shivakumar Filss, Christian P. Stegmayr, Carina Ruge, Maximillian I. Neumaier, Bernd Shah, Nadim J. Fink, Gereon R. Langen, Karl-Josef Galldiks, Norbert |
author_sort | Lohmann, Philipp |
collection | PubMed |
description | Mutations in the isocitrate dehydrogenase (IDH mut) gene have gained paramount importance for the prognosis of glioma patients. To date, reliable techniques for a preoperative evaluation of IDH genotype remain scarce. Therefore, we investigated the potential of O-(2-[(18)F]fluoroethyl)-L-tyrosine (FET) PET radiomics using textural features combined with static and dynamic parameters of FET uptake for noninvasive prediction of IDH genotype. Prior to surgery, 84 patients with newly diagnosed and untreated gliomas underwent FET PET using a standard scanner (15 of 56 patients with IDH mut) or a dedicated high-resolution hybrid PET/MR scanner (11 of 28 patients with IDH mut). Static, dynamic and textural parameters of FET uptake in the tumor area were evaluated. Diagnostic accuracy of the parameters was evaluated using the neuropathological result as reference. Additionally, FET PET and textural parameters were combined to further increase the diagnostic accuracy. The resulting models were validated using cross-validation. Independent of scanner type, the combination of standard PET parameters with textural features increased significantly diagnostic accuracy. The highest diagnostic accuracy of 93% for prediction of IDH genotype was achieved with the hybrid PET/MR scanner. Our findings suggest that the combination of conventional FET PET parameters with textural features provides important diagnostic information for the non-invasive prediction of the IDH genotype. |
format | Online Article Text |
id | pubmed-6127131 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61271312018-09-10 Predicting IDH genotype in gliomas using FET PET radiomics Lohmann, Philipp Lerche, Christoph Bauer, Elena K. Steger, Jan Stoffels, Gabriele Blau, Tobias Dunkl, Veronika Kocher, Martin Viswanathan, Shivakumar Filss, Christian P. Stegmayr, Carina Ruge, Maximillian I. Neumaier, Bernd Shah, Nadim J. Fink, Gereon R. Langen, Karl-Josef Galldiks, Norbert Sci Rep Article Mutations in the isocitrate dehydrogenase (IDH mut) gene have gained paramount importance for the prognosis of glioma patients. To date, reliable techniques for a preoperative evaluation of IDH genotype remain scarce. Therefore, we investigated the potential of O-(2-[(18)F]fluoroethyl)-L-tyrosine (FET) PET radiomics using textural features combined with static and dynamic parameters of FET uptake for noninvasive prediction of IDH genotype. Prior to surgery, 84 patients with newly diagnosed and untreated gliomas underwent FET PET using a standard scanner (15 of 56 patients with IDH mut) or a dedicated high-resolution hybrid PET/MR scanner (11 of 28 patients with IDH mut). Static, dynamic and textural parameters of FET uptake in the tumor area were evaluated. Diagnostic accuracy of the parameters was evaluated using the neuropathological result as reference. Additionally, FET PET and textural parameters were combined to further increase the diagnostic accuracy. The resulting models were validated using cross-validation. Independent of scanner type, the combination of standard PET parameters with textural features increased significantly diagnostic accuracy. The highest diagnostic accuracy of 93% for prediction of IDH genotype was achieved with the hybrid PET/MR scanner. Our findings suggest that the combination of conventional FET PET parameters with textural features provides important diagnostic information for the non-invasive prediction of the IDH genotype. Nature Publishing Group UK 2018-09-06 /pmc/articles/PMC6127131/ /pubmed/30190592 http://dx.doi.org/10.1038/s41598-018-31806-7 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Lohmann, Philipp Lerche, Christoph Bauer, Elena K. Steger, Jan Stoffels, Gabriele Blau, Tobias Dunkl, Veronika Kocher, Martin Viswanathan, Shivakumar Filss, Christian P. Stegmayr, Carina Ruge, Maximillian I. Neumaier, Bernd Shah, Nadim J. Fink, Gereon R. Langen, Karl-Josef Galldiks, Norbert Predicting IDH genotype in gliomas using FET PET radiomics |
title | Predicting IDH genotype in gliomas using FET PET radiomics |
title_full | Predicting IDH genotype in gliomas using FET PET radiomics |
title_fullStr | Predicting IDH genotype in gliomas using FET PET radiomics |
title_full_unstemmed | Predicting IDH genotype in gliomas using FET PET radiomics |
title_short | Predicting IDH genotype in gliomas using FET PET radiomics |
title_sort | predicting idh genotype in gliomas using fet pet radiomics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127131/ https://www.ncbi.nlm.nih.gov/pubmed/30190592 http://dx.doi.org/10.1038/s41598-018-31806-7 |
work_keys_str_mv | AT lohmannphilipp predictingidhgenotypeingliomasusingfetpetradiomics AT lerchechristoph predictingidhgenotypeingliomasusingfetpetradiomics AT bauerelenak predictingidhgenotypeingliomasusingfetpetradiomics AT stegerjan predictingidhgenotypeingliomasusingfetpetradiomics AT stoffelsgabriele predictingidhgenotypeingliomasusingfetpetradiomics AT blautobias predictingidhgenotypeingliomasusingfetpetradiomics AT dunklveronika predictingidhgenotypeingliomasusingfetpetradiomics AT kochermartin predictingidhgenotypeingliomasusingfetpetradiomics AT viswanathanshivakumar predictingidhgenotypeingliomasusingfetpetradiomics AT filsschristianp predictingidhgenotypeingliomasusingfetpetradiomics AT stegmayrcarina predictingidhgenotypeingliomasusingfetpetradiomics AT rugemaximilliani predictingidhgenotypeingliomasusingfetpetradiomics AT neumaierbernd predictingidhgenotypeingliomasusingfetpetradiomics AT shahnadimj predictingidhgenotypeingliomasusingfetpetradiomics AT finkgereonr predictingidhgenotypeingliomasusingfetpetradiomics AT langenkarljosef predictingidhgenotypeingliomasusingfetpetradiomics AT galldiksnorbert predictingidhgenotypeingliomasusingfetpetradiomics |