Cargando…

Visual percepts modify iconic memory in humans

Our visual system briefly retains a trace of a stimulus after it disappears. This phenomenon is known as iconic memory and its contents are thought to be temporally integrated with subsequent visual inputs to produce a single composite representation. However, there is little consensus on the tempor...

Descripción completa

Detalles Bibliográficos
Autores principales: Sugita, Yoichi, Hidaka, Souta, Teramoto, Wataru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127220/
https://www.ncbi.nlm.nih.gov/pubmed/30190501
http://dx.doi.org/10.1038/s41598-018-31601-4
Descripción
Sumario:Our visual system briefly retains a trace of a stimulus after it disappears. This phenomenon is known as iconic memory and its contents are thought to be temporally integrated with subsequent visual inputs to produce a single composite representation. However, there is little consensus on the temporal integration between iconic memory and subsequent visual inputs. Here, we show that iconic memory revises its contents depending upon the configuration of the newly produced single representation with particular temporal characteristics. The Poggendorff illusion, in which two collinear line segments are perceived as non-collinear by an intervening rectangle, was observed when the rectangle was presented during a period spanning from 50 ms before to 200 ms after the presentation of the line segments. The illusion was most prominent when the rectangle was presented approximately 100 to 150 ms after the line segments. Furthermore, the illusion was observed at the center of a moving object, but only when the line segments were presented before the rectangle. These results indicate that the contents of iconic memory are susceptible to the modulatory influence of subsequent visual inputs before being translated into conscious perception in a time-locked manner both in retinotopic and non-retinotopic, object-centered frames of reference.