Cargando…
Deep Supervised Learning Using Local Errors
Error backpropagation is a highly effective mechanism for learning high-quality hierarchical features in deep networks. Updating the features or weights in one layer, however, requires waiting for the propagation of error signals from higher layers. Learning using delayed and non-local errors makes...
Autores principales: | Mostafa, Hesham, Ramesh, Vishwajith, Cauwenberghs, Gert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127296/ https://www.ncbi.nlm.nih.gov/pubmed/30233295 http://dx.doi.org/10.3389/fnins.2018.00608 |
Ejemplares similares
-
Hardware-Efficient On-line Learning through Pipelined Truncated-Error Backpropagation in Binary-State Networks
por: Mostafa, Hesham, et al.
Publicado: (2017) -
Synaptic Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE)
por: Kaiser, Jacques, et al.
Publicado: (2020) -
Biologically plausible local synaptic learning rules robustly implement deep supervised learning
por: Konishi, Masataka, et al.
Publicado: (2023) -
First Error-Based Supervised Learning Algorithm for Spiking Neural Networks
por: Luo, Xiaoling, et al.
Publicado: (2019) -
A Validation of Supervised Deep Learning for Gait Analysis in the Cat
por: Lecomte, Charly G., et al.
Publicado: (2021)