Cargando…

Digital Polymerase Chain Reaction Assay for the Genetic Variation in a Sporadic Familial Adenomatous Polyposis Patient Using the Chip-in-a-tube Format

The quantitative analysis of human genetic variation is crucial for understanding the molecular characteristics of serious medical conditions, such as tumors. Because digital polymerase chain reactions (PCR) enable the precise quantification of DNA copy number variants, they are becoming an essentia...

Descripción completa

Detalles Bibliográficos
Autores principales: Kahyo, Tomoaki, Sugimura, Haruhiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128215/
https://www.ncbi.nlm.nih.gov/pubmed/30176028
http://dx.doi.org/10.3791/58199
Descripción
Sumario:The quantitative analysis of human genetic variation is crucial for understanding the molecular characteristics of serious medical conditions, such as tumors. Because digital polymerase chain reactions (PCR) enable the precise quantification of DNA copy number variants, they are becoming an essential tool for detecting rare genetic variations, such as drug-resistant mutations. It is expected that molecular diagnoses using digital PCR (dPCR) will be available in clinical practice in the near future; thus, how to efficiently conduct dPCR with human genetic material is a hot topic. Here, we introduce a method to detect Adenomatous polyposis coli (APC) somatic mosaicism using dPCR with the chip-in-a-tube format, which allows eight dPCR reactions to be simultaneously conducted. Care should be taken when filling and sealing the reaction mixture on the chips. This article demonstrates how to avoid the over- and underestimation of positive partitions. Furthermore, we present a simple procedure for collecting the dPCR product from the partitions on the chips, which can then be used to confirm the specific amplification. We hope that this methods report will help promote the dPCR with the chip-in-a-tube method in genetic research.