Cargando…

Circ-BPTF promotes bladder cancer progression and recurrence through the miR-31-5p/RAB27A axis

Circ-BPTF (hsa_circ_0000799) is a novel circular RNA derived from BPTF exons. Although BPTF is a well-studied predecessor gene, the characteristics and functions of circ-BPTF have not yet been reported. Here, we show that expression of circ-BPTF is increased in bladder cancer (BCa) tissues and cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Bi, Junming, Liu, Hongwei, Cai, Zijian, Dong, Wei, Jiang, Ning, Yang, Meihua, Huang, Jian, Lin, Tianxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128440/
https://www.ncbi.nlm.nih.gov/pubmed/30103209
http://dx.doi.org/10.18632/aging.101520
Descripción
Sumario:Circ-BPTF (hsa_circ_0000799) is a novel circular RNA derived from BPTF exons. Although BPTF is a well-studied predecessor gene, the characteristics and functions of circ-BPTF have not yet been reported. Here, we show that expression of circ-BPTF is increased in bladder cancer (BCa) tissues and cell lines compared with noncancerous tissues and cell lines. Consistently, BCa patients with higher expression levels of circ-BPTF were found to have higher tumor grades and poorer prognosis. Functionally, knockdown of circ-BPTF inhibited tumor progression in vitro and in vivo. Mechanistically, a target microRNA of circ-BPTF was confirmed to be miR-31-5p, and miR-31-5p mimics partially reversed the effect of circ-BPTF. Furthermore, RAB27A was predicted and shown to be a target of miR-31-5p, and circ-BPTF attenuated the anti-oncogenic effect of miR-31-5p and consequently enhanced RAB27A expression. In summary, our findings reveal that circ-BPTF promotes BCa progression through the miR-31-5p/RAB27A axis, suggesting that circ-BPTF may be a potential target for BCa treatment.