Cargando…
Role of S1P/S1PR3 axis in release of CCL20 from human bronchial epithelial cells
BACKGROUND: Sphingosine kinase phosphorylates sphingosine to generate sphingosine 1 phosphate (S1P) following stimulation of the five plasma membrane G-protein-coupled receptors. The objective of this study is to clarify the role of S1P and its receptors (S1PRs), especially S1PR3 in airway epithelia...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128515/ https://www.ncbi.nlm.nih.gov/pubmed/30192865 http://dx.doi.org/10.1371/journal.pone.0203211 |
Sumario: | BACKGROUND: Sphingosine kinase phosphorylates sphingosine to generate sphingosine 1 phosphate (S1P) following stimulation of the five plasma membrane G-protein-coupled receptors. The objective of this study is to clarify the role of S1P and its receptors (S1PRs), especially S1PR3 in airway epithelial cells. METHODS: The effects of S1P on asthma-related genes expression were examined with the human bronchial epithelial cells BEAS-2B and Calu-3 using a transcriptome analysis and siRNA of S1PRs. To clarify the role of CCL20 in the airway inflammation, BALB/c mice were immunized with ovalbumin (OVA) and subsequently challenged with an OVA-containing aerosol to induce asthma with or without intraperitoneal administration of anti-CCL20. Finally, the anti-inflammatory effect of VPC 23019, S1PR1/3 antagonist, in the OVA-induced asthma was examined. RESULTS: S1P induced the expression of some asthma-related genes, such as ADRB2, PTGER4, and CCL20, in the bronchial epithelial cells. The knock-down of SIPR3 suppressed the expression of S1P-inducing CCL20. Anti-CCL20 antibody significantly attenuated the eosinophil numbers in the bronchoalveolar lavage fluid (P<0.01). Upon OVA challenge, VPC23019 exhibited substantially attenuated eosinophilic inflammation. CONCLUSIONS: S1P/S1PR3 pathways have a role in release of proinflammatory cytokines from bronchial epithelial cells. Our results suggest that S1P/S1PR3 may be a possible candidate for the treatment of bronchial asthma. |
---|