Cargando…

Gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia

Functional gastrointestinal disorders (FGIDs) are characterized by dysregulated gut-brain interactions. Emerging evidence shows that low-grade mucosal inflammation and immune activation contribute to FGIDs, including functional dyspepsia (FD). Stress plays an important role in the onset of FD sympto...

Descripción completa

Detalles Bibliográficos
Autores principales: Hagiwara, Shin-ichiro, Kaushal, Esha, Paruthiyil, Sreenivasan, Pasricha, Pankaj J., Hasdemir, Burcu, Bhargava, Aditi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128656/
https://www.ncbi.nlm.nih.gov/pubmed/30192883
http://dx.doi.org/10.1371/journal.pone.0203704
_version_ 1783353686238429184
author Hagiwara, Shin-ichiro
Kaushal, Esha
Paruthiyil, Sreenivasan
Pasricha, Pankaj J.
Hasdemir, Burcu
Bhargava, Aditi
author_facet Hagiwara, Shin-ichiro
Kaushal, Esha
Paruthiyil, Sreenivasan
Pasricha, Pankaj J.
Hasdemir, Burcu
Bhargava, Aditi
author_sort Hagiwara, Shin-ichiro
collection PubMed
description Functional gastrointestinal disorders (FGIDs) are characterized by dysregulated gut-brain interactions. Emerging evidence shows that low-grade mucosal inflammation and immune activation contribute to FGIDs, including functional dyspepsia (FD). Stress plays an important role in the onset of FD symptoms. In human subjects with FD, presence of gastric mast cells has been reported, but factors that influence mast cell infiltration remain uncharacterized. Corticotropin-releasing factor (CRF) initiates the body’s stress response and is known to degranulate mast cells. In this study, we delineated the role of the CRF system in the pathogenesis of FD in a rat model. Gastric irritation in neonate rat pups with iodoacetamide (IA) was used to induce FD-like symptoms. RNA interference (RNAi) was used to silence gastric CRF expression. Mast cell infiltrate in the stomach increased by 54% in IA-treated rats compared to controls and CRF-RNAi tended to decrease gastric mast cell infiltrate. Sucrose intake decreased in IA-treated rats and mast cell numbers showed a negative association with sucrose intake. IA treatment and transient silencing of gastric CRF increased hypothalamic CRF levels. In IA-treated rats, gastric levels of CRF receptor 2 (CRF(2)) decreased by ~76%, whereas hypothalamic CRF receptor 1 (CRF(1)) levels increased. Plasma levels of TNF-α showed a positive correlation with plasma CRF levels. Levels of phosphorylated p38 and ERK1/2 in the stomach showed a positive correlation with gastric CRF levels. Thus, CRF may contribute to low grade inflammation via modulating mast cell infiltration, cytokine levels, MAPK signaling, and the gut-brain axis.
format Online
Article
Text
id pubmed-6128656
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-61286562018-09-15 Gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia Hagiwara, Shin-ichiro Kaushal, Esha Paruthiyil, Sreenivasan Pasricha, Pankaj J. Hasdemir, Burcu Bhargava, Aditi PLoS One Research Article Functional gastrointestinal disorders (FGIDs) are characterized by dysregulated gut-brain interactions. Emerging evidence shows that low-grade mucosal inflammation and immune activation contribute to FGIDs, including functional dyspepsia (FD). Stress plays an important role in the onset of FD symptoms. In human subjects with FD, presence of gastric mast cells has been reported, but factors that influence mast cell infiltration remain uncharacterized. Corticotropin-releasing factor (CRF) initiates the body’s stress response and is known to degranulate mast cells. In this study, we delineated the role of the CRF system in the pathogenesis of FD in a rat model. Gastric irritation in neonate rat pups with iodoacetamide (IA) was used to induce FD-like symptoms. RNA interference (RNAi) was used to silence gastric CRF expression. Mast cell infiltrate in the stomach increased by 54% in IA-treated rats compared to controls and CRF-RNAi tended to decrease gastric mast cell infiltrate. Sucrose intake decreased in IA-treated rats and mast cell numbers showed a negative association with sucrose intake. IA treatment and transient silencing of gastric CRF increased hypothalamic CRF levels. In IA-treated rats, gastric levels of CRF receptor 2 (CRF(2)) decreased by ~76%, whereas hypothalamic CRF receptor 1 (CRF(1)) levels increased. Plasma levels of TNF-α showed a positive correlation with plasma CRF levels. Levels of phosphorylated p38 and ERK1/2 in the stomach showed a positive correlation with gastric CRF levels. Thus, CRF may contribute to low grade inflammation via modulating mast cell infiltration, cytokine levels, MAPK signaling, and the gut-brain axis. Public Library of Science 2018-09-07 /pmc/articles/PMC6128656/ /pubmed/30192883 http://dx.doi.org/10.1371/journal.pone.0203704 Text en © 2018 Hagiwara et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Hagiwara, Shin-ichiro
Kaushal, Esha
Paruthiyil, Sreenivasan
Pasricha, Pankaj J.
Hasdemir, Burcu
Bhargava, Aditi
Gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia
title Gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia
title_full Gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia
title_fullStr Gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia
title_full_unstemmed Gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia
title_short Gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia
title_sort gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128656/
https://www.ncbi.nlm.nih.gov/pubmed/30192883
http://dx.doi.org/10.1371/journal.pone.0203704
work_keys_str_mv AT hagiwarashinichiro gastriccorticotropinreleasingfactorinfluencesmastcellinfiltrationinaratmodeloffunctionaldyspepsia
AT kaushalesha gastriccorticotropinreleasingfactorinfluencesmastcellinfiltrationinaratmodeloffunctionaldyspepsia
AT paruthiyilsreenivasan gastriccorticotropinreleasingfactorinfluencesmastcellinfiltrationinaratmodeloffunctionaldyspepsia
AT pasrichapankajj gastriccorticotropinreleasingfactorinfluencesmastcellinfiltrationinaratmodeloffunctionaldyspepsia
AT hasdemirburcu gastriccorticotropinreleasingfactorinfluencesmastcellinfiltrationinaratmodeloffunctionaldyspepsia
AT bhargavaaditi gastriccorticotropinreleasingfactorinfluencesmastcellinfiltrationinaratmodeloffunctionaldyspepsia