Cargando…

Detection of betacyanin in red-tube spinach (Spinacia oleracea) and its biofortification by strategic hydroponics

Betacyanins have been reported as water-soluble, nitrogenous pigments found in the order Caryophyllales, and they are known for powerful natural antioxidant. The biofortification of secondary metabolites such as anthocyanins and betacyanins has recently been performed in food crops by metabolic engi...

Descripción completa

Detalles Bibliográficos
Autores principales: Watanabe, Sho, Ohtani, Yuta, Aoki, Wataru, Uno, Yuko, Sukekiyo, Yasunori, Kubokawa, Seiichi, Ueda, Mitsuyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128657/
https://www.ncbi.nlm.nih.gov/pubmed/30192863
http://dx.doi.org/10.1371/journal.pone.0203656
Descripción
Sumario:Betacyanins have been reported as water-soluble, nitrogenous pigments found in the order Caryophyllales, and they are known for powerful natural antioxidant. The biofortification of secondary metabolites such as anthocyanins and betacyanins has recently been performed in food crops by metabolic engineering through genetic modification. However, the distribution of genetically modified foods is strictly regulated. Therefore, we aimed to develop a new method for biofortifying natural antioxidants, betacyanins, without genetic modification. We first detected the presence of betacyanins in red-tube spinach (Spinacia oleracea) through ultraviolet-visible spectroscopy and mass spectrometry. We then hydroponically cultivated plants in the presence of three candidate compounds for betacyanin biofortification: dopamine, Ca(2+), and sucrose. Liquid chromatography–tandem mass spectrometry (LC–MS/MS) and antioxidant activity analyses showed that sucrose was most successful in biofortifying betacyanins, and reverse transcription polymerase chain reaction (RT-PCR) indicated that several genes involved in betacyanin biosynthesis were induced by sucrose. Therefore, strategic hydroponics represents a new approach for cultivating betacyanin-enriched vegetables.