Cargando…

Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids

Plant growth-promoting bacteria (PGPB) and humic acids (HA) have been used as biostimulants in field conditions. The complete genomic and proteomic transcription of Herbaspirillum seropedicae and Gluconacetobacter diazotrophicus is available but interpreting and utilizing this information in the fie...

Descripción completa

Detalles Bibliográficos
Autores principales: Aguiar, Natalia O., Olivares, Fabio L., Novotny, Etelvino H., Canellas, Luciano P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129145/
https://www.ncbi.nlm.nih.gov/pubmed/30202643
http://dx.doi.org/10.7717/peerj.5445
_version_ 1783353760181911552
author Aguiar, Natalia O.
Olivares, Fabio L.
Novotny, Etelvino H.
Canellas, Luciano P.
author_facet Aguiar, Natalia O.
Olivares, Fabio L.
Novotny, Etelvino H.
Canellas, Luciano P.
author_sort Aguiar, Natalia O.
collection PubMed
description Plant growth-promoting bacteria (PGPB) and humic acids (HA) have been used as biostimulants in field conditions. The complete genomic and proteomic transcription of Herbaspirillum seropedicae and Gluconacetobacter diazotrophicus is available but interpreting and utilizing this information in the field to increase crop performance is challenging. The identification and characterization of metabolites that are induced by genomic changes may be used to improve plant responses to inoculation. The objective of this study was to describe changes in sugarcane metabolic profile that occur when HA and PGPB are used as biostimulants. Inoculum was applied to soil containing 45-day old sugarcane stalks. One week after inoculation, the methanolic extracts from leaves were obtained and analyzed by gas chromatography coupled to time-of-flight mass spectrometry; a total of 1,880 compounds were observed and 280 were identified in all samples. The application of HA significantly decreased the concentration of 15 metabolites, which generally included amino acids. HA increased the levels of 40 compounds, and these included metabolites linked to the stress response (shikimic, caffeic, hydroxycinnamic acids, putrescine, behenic acid, quinoline xylulose, galactose, lactose proline, oxyproline and valeric acid) and cellular growth (adenine and adenosine derivatives, ribose, ribonic acid and citric acid). Similarly, PGPB enhanced the level of metabolites identified in HA-treated soils; e.g., 48 metabolites were elevated and included amino acids, nucleic acids, organic acids, and lipids. Co-inoculation (HA+PGPB) boosted the level of 110 metabolites with respect to non-inoculated controls; these included amino acids, lipids and nitrogenous compounds. Changes in the metabolic profile induced by HA+PGPB influenced both glucose and pentose pathways and resulted in the accumulation of heptuloses and riboses, which are substrates in the nucleoside biosynthesis and shikimic acid pathways. The mevalonate pathway was also activated, thus increasing phytosterol synthesis. The improvement in cellular metabolism observed with PGPB+HA was compatible with high levels of vitamins. Glucuronate and amino sugars were stimulated in addition to the products and intermediary compounds of tricarboxylic acid metabolism. Lipids and amino acids were the main compounds induced by co-inoculation in addition to antioxidants, stress-related metabolites, and compounds involved in cellular redox. The primary compounds observed in each treatment were identified, and the effect of co-inoculation (HA+PGPB) on metabolite levels was discussed.
format Online
Article
Text
id pubmed-6129145
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-61291452018-09-10 Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids Aguiar, Natalia O. Olivares, Fabio L. Novotny, Etelvino H. Canellas, Luciano P. PeerJ Agricultural Science Plant growth-promoting bacteria (PGPB) and humic acids (HA) have been used as biostimulants in field conditions. The complete genomic and proteomic transcription of Herbaspirillum seropedicae and Gluconacetobacter diazotrophicus is available but interpreting and utilizing this information in the field to increase crop performance is challenging. The identification and characterization of metabolites that are induced by genomic changes may be used to improve plant responses to inoculation. The objective of this study was to describe changes in sugarcane metabolic profile that occur when HA and PGPB are used as biostimulants. Inoculum was applied to soil containing 45-day old sugarcane stalks. One week after inoculation, the methanolic extracts from leaves were obtained and analyzed by gas chromatography coupled to time-of-flight mass spectrometry; a total of 1,880 compounds were observed and 280 were identified in all samples. The application of HA significantly decreased the concentration of 15 metabolites, which generally included amino acids. HA increased the levels of 40 compounds, and these included metabolites linked to the stress response (shikimic, caffeic, hydroxycinnamic acids, putrescine, behenic acid, quinoline xylulose, galactose, lactose proline, oxyproline and valeric acid) and cellular growth (adenine and adenosine derivatives, ribose, ribonic acid and citric acid). Similarly, PGPB enhanced the level of metabolites identified in HA-treated soils; e.g., 48 metabolites were elevated and included amino acids, nucleic acids, organic acids, and lipids. Co-inoculation (HA+PGPB) boosted the level of 110 metabolites with respect to non-inoculated controls; these included amino acids, lipids and nitrogenous compounds. Changes in the metabolic profile induced by HA+PGPB influenced both glucose and pentose pathways and resulted in the accumulation of heptuloses and riboses, which are substrates in the nucleoside biosynthesis and shikimic acid pathways. The mevalonate pathway was also activated, thus increasing phytosterol synthesis. The improvement in cellular metabolism observed with PGPB+HA was compatible with high levels of vitamins. Glucuronate and amino sugars were stimulated in addition to the products and intermediary compounds of tricarboxylic acid metabolism. Lipids and amino acids were the main compounds induced by co-inoculation in addition to antioxidants, stress-related metabolites, and compounds involved in cellular redox. The primary compounds observed in each treatment were identified, and the effect of co-inoculation (HA+PGPB) on metabolite levels was discussed. PeerJ Inc. 2018-09-05 /pmc/articles/PMC6129145/ /pubmed/30202643 http://dx.doi.org/10.7717/peerj.5445 Text en ©2018 Aguiar et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Agricultural Science
Aguiar, Natalia O.
Olivares, Fabio L.
Novotny, Etelvino H.
Canellas, Luciano P.
Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids
title Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids
title_full Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids
title_fullStr Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids
title_full_unstemmed Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids
title_short Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids
title_sort changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids
topic Agricultural Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129145/
https://www.ncbi.nlm.nih.gov/pubmed/30202643
http://dx.doi.org/10.7717/peerj.5445
work_keys_str_mv AT aguiarnataliao changesinmetabolicprofilingofsugarcaneleavesinducedbyendophyticdiazotrophicbacteriaandhumicacids
AT olivaresfabiol changesinmetabolicprofilingofsugarcaneleavesinducedbyendophyticdiazotrophicbacteriaandhumicacids
AT novotnyetelvinoh changesinmetabolicprofilingofsugarcaneleavesinducedbyendophyticdiazotrophicbacteriaandhumicacids
AT canellaslucianop changesinmetabolicprofilingofsugarcaneleavesinducedbyendophyticdiazotrophicbacteriaandhumicacids