Cargando…

Metformin Inhibits Gluconeogenesis by a Redox-Dependent Mechanism In Vivo

Metformin, the universal first-line treatment for type 2 diabetes, exerts its therapeutic glucose-lowering effects by inhibiting hepatic gluconeogenesis. However, the primary molecular mechanism of this biguanide remains unresolved, though it has been suggested to act, at least partially, by mitocho...

Descripción completa

Detalles Bibliográficos
Autores principales: Madiraju, Anila K., Qiu, Yang, Perry, Rachel J., Rahimi, Yasmeen, Zhang, Xian-Man, Zhang, Dongyan, Camporez, João-Paulo G., Cline, Gary W., Butrico, Gina M., Kemp, Bruce E., Casals, Gregori, Steinberg, Gregory R., Vatner, Daniel F., Petersen, Kitt Falk, Shulman, Gerald I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129196/
https://www.ncbi.nlm.nih.gov/pubmed/30038219
http://dx.doi.org/10.1038/s41591-018-0125-4
_version_ 1783353766025625600
author Madiraju, Anila K.
Qiu, Yang
Perry, Rachel J.
Rahimi, Yasmeen
Zhang, Xian-Man
Zhang, Dongyan
Camporez, João-Paulo G.
Cline, Gary W.
Butrico, Gina M.
Kemp, Bruce E.
Casals, Gregori
Steinberg, Gregory R.
Vatner, Daniel F.
Petersen, Kitt Falk
Shulman, Gerald I.
author_facet Madiraju, Anila K.
Qiu, Yang
Perry, Rachel J.
Rahimi, Yasmeen
Zhang, Xian-Man
Zhang, Dongyan
Camporez, João-Paulo G.
Cline, Gary W.
Butrico, Gina M.
Kemp, Bruce E.
Casals, Gregori
Steinberg, Gregory R.
Vatner, Daniel F.
Petersen, Kitt Falk
Shulman, Gerald I.
author_sort Madiraju, Anila K.
collection PubMed
description Metformin, the universal first-line treatment for type 2 diabetes, exerts its therapeutic glucose-lowering effects by inhibiting hepatic gluconeogenesis. However, the primary molecular mechanism of this biguanide remains unresolved, though it has been suggested to act, at least partially, by mitochondrial complex I inhibition. Here, we show that clinically-relevant plasma metformin concentrations achieved by acute intravenous, acute intraportal or chronic oral administration in awake normal and diabetic rats inhibit gluconeogenesis from lactate and glycerol but not from pyruvate and alanine, implicating an increased cytosolic redox state in mediating metformin’s antihyperglycemic effect. All of these effects occurred independent of complex I inhibition, evidenced by unaltered hepatic energy charge and citrate synthase flux. Normalizing the cytosolic redox state by infusion of methylene blue or substrates that contribute to gluconeogenesis independently of the cytosolic redox state abrogated metformin-mediated inhibition of gluconeogenesis in vivo. Additionally, in mice expressing constitutively active acetyl-CoA carboxylase, metformin acutely decreased hepatic glucose production and increased the hepatic cytosolic redox state without altering hepatic triglyceride content or gluconeogenic enzyme expression. These studies demonstrate that metformin, at clinically-relevant plasma concentrations, inhibits hepatic gluconeogenesis in a redox-dependent manner independent of reductions in citrate synthase flux, hepatic nucleotide concentrations, acetyl-CoA carboxylase activity, or gluconeogenic enzyme protein expression.
format Online
Article
Text
id pubmed-6129196
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-61291962019-01-23 Metformin Inhibits Gluconeogenesis by a Redox-Dependent Mechanism In Vivo Madiraju, Anila K. Qiu, Yang Perry, Rachel J. Rahimi, Yasmeen Zhang, Xian-Man Zhang, Dongyan Camporez, João-Paulo G. Cline, Gary W. Butrico, Gina M. Kemp, Bruce E. Casals, Gregori Steinberg, Gregory R. Vatner, Daniel F. Petersen, Kitt Falk Shulman, Gerald I. Nat Med Article Metformin, the universal first-line treatment for type 2 diabetes, exerts its therapeutic glucose-lowering effects by inhibiting hepatic gluconeogenesis. However, the primary molecular mechanism of this biguanide remains unresolved, though it has been suggested to act, at least partially, by mitochondrial complex I inhibition. Here, we show that clinically-relevant plasma metformin concentrations achieved by acute intravenous, acute intraportal or chronic oral administration in awake normal and diabetic rats inhibit gluconeogenesis from lactate and glycerol but not from pyruvate and alanine, implicating an increased cytosolic redox state in mediating metformin’s antihyperglycemic effect. All of these effects occurred independent of complex I inhibition, evidenced by unaltered hepatic energy charge and citrate synthase flux. Normalizing the cytosolic redox state by infusion of methylene blue or substrates that contribute to gluconeogenesis independently of the cytosolic redox state abrogated metformin-mediated inhibition of gluconeogenesis in vivo. Additionally, in mice expressing constitutively active acetyl-CoA carboxylase, metformin acutely decreased hepatic glucose production and increased the hepatic cytosolic redox state without altering hepatic triglyceride content or gluconeogenic enzyme expression. These studies demonstrate that metformin, at clinically-relevant plasma concentrations, inhibits hepatic gluconeogenesis in a redox-dependent manner independent of reductions in citrate synthase flux, hepatic nucleotide concentrations, acetyl-CoA carboxylase activity, or gluconeogenic enzyme protein expression. 2018-07-23 2018-09 /pmc/articles/PMC6129196/ /pubmed/30038219 http://dx.doi.org/10.1038/s41591-018-0125-4 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms Reprints and permissions information is available at www.nature.com/reprints.
spellingShingle Article
Madiraju, Anila K.
Qiu, Yang
Perry, Rachel J.
Rahimi, Yasmeen
Zhang, Xian-Man
Zhang, Dongyan
Camporez, João-Paulo G.
Cline, Gary W.
Butrico, Gina M.
Kemp, Bruce E.
Casals, Gregori
Steinberg, Gregory R.
Vatner, Daniel F.
Petersen, Kitt Falk
Shulman, Gerald I.
Metformin Inhibits Gluconeogenesis by a Redox-Dependent Mechanism In Vivo
title Metformin Inhibits Gluconeogenesis by a Redox-Dependent Mechanism In Vivo
title_full Metformin Inhibits Gluconeogenesis by a Redox-Dependent Mechanism In Vivo
title_fullStr Metformin Inhibits Gluconeogenesis by a Redox-Dependent Mechanism In Vivo
title_full_unstemmed Metformin Inhibits Gluconeogenesis by a Redox-Dependent Mechanism In Vivo
title_short Metformin Inhibits Gluconeogenesis by a Redox-Dependent Mechanism In Vivo
title_sort metformin inhibits gluconeogenesis by a redox-dependent mechanism in vivo
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129196/
https://www.ncbi.nlm.nih.gov/pubmed/30038219
http://dx.doi.org/10.1038/s41591-018-0125-4
work_keys_str_mv AT madirajuanilak metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo
AT qiuyang metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo
AT perryrachelj metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo
AT rahimiyasmeen metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo
AT zhangxianman metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo
AT zhangdongyan metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo
AT camporezjoaopaulog metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo
AT clinegaryw metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo
AT butricoginam metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo
AT kempbrucee metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo
AT casalsgregori metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo
AT steinberggregoryr metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo
AT vatnerdanielf metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo
AT petersenkittfalk metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo
AT shulmangeraldi metformininhibitsgluconeogenesisbyaredoxdependentmechanisminvivo