Cargando…
Discovering epistatic feature interactions from neural network models of regulatory DNA sequences
MOTIVATION: Transcription factors bind regulatory DNA sequences in a combinatorial manner to modulate gene expression. Deep neural networks (DNNs) can learn the cis-regulatory grammars encoded in regulatory DNA sequences associated with transcription factor binding and chromatin accessibility. Sever...
Autores principales: | Greenside, Peyton, Shimko, Tyler, Fordyce, Polly, Kundaje, Anshul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129272/ https://www.ncbi.nlm.nih.gov/pubmed/30423062 http://dx.doi.org/10.1093/bioinformatics/bty575 |
Ejemplares similares
-
Ontology-based validation and identification of regulatory phenotypes
por: Kulmanov, Maxat, et al.
Publicado: (2018) -
Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization without phenotypes
por: Alshahrani, Mona, et al.
Publicado: (2018) -
Off-target predictions in CRISPR-Cas9 gene editing using deep learning
por: Lin, Jiecong, et al.
Publicado: (2018) -
CisPi: a transcriptomic score for disclosing cis-acting disease-associated lincRNAs
por: Wang, Zhezhen, et al.
Publicado: (2018) -
Fast characterization of segmental duplications in genome assemblies
por: Numanagić, Ibrahim, et al.
Publicado: (2018)