Cargando…
DeepDTA: deep drug–target binding affinity prediction
MOTIVATION: The identification of novel drug–target (DT) interactions is a substantial part of the drug discovery process. Most of the computational methods that have been proposed to predict DT interactions have focused on binary classification, where the goal is to determine whether a DT pair inte...
Autores principales: | Öztürk, Hakime, Özgür, Arzucan, Ozkirimli, Elif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129291/ https://www.ncbi.nlm.nih.gov/pubmed/30423097 http://dx.doi.org/10.1093/bioinformatics/bty593 |
Ejemplares similares
-
A novel methodology on distributed representations of proteins using their interacting ligands
por: Öztürk, Hakime, et al.
Publicado: (2018) -
Off-target predictions in CRISPR-Cas9 gene editing using deep learning
por: Lin, Jiecong, et al.
Publicado: (2018) -
Classification of Beta-Lactamases and Penicillin Binding Proteins Using Ligand-Centric Network Models
por: Öztürk, Hakime, et al.
Publicado: (2015) -
A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction
por: Öztürk, Hakime, et al.
Publicado: (2016) -
Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization without phenotypes
por: Alshahrani, Mona, et al.
Publicado: (2018)