Cargando…
Digital radiography image denoising using a generative adversarial network
Statistical noise may degrade the x-ray image quality of digital radiography (DR) system. This corruption can be alleviated by extending exposure time of detectors and increasing the intensity of radiation. However, in some instances, such as the security check and medical imaging examination, the s...
Autores principales: | Sun, Yuewen, Liu, Ximing, Cong, Peng, Li, Litao, Zhao, Zhongwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130336/ https://www.ncbi.nlm.nih.gov/pubmed/29889095 http://dx.doi.org/10.3233/XST-17356 |
Ejemplares similares
-
Enhancement of digital radiography image quality using a convolutional neural network
por: Sun, Yuewen, et al.
Publicado: (2017) -
A generative adversarial network with “zero-shot” learning for positron image denoising
por: Zhu, Mingwei, et al.
Publicado: (2023) -
Auto-Denoising for EEG Signals Using Generative Adversarial Network
por: An, Yang, et al.
Publicado: (2022) -
Adversarial Gaussian Denoiser for Multiple-Level Image Denoising
por: Khan, Aamir, et al.
Publicado: (2021) -
A Generative Adversarial Network-Based Image Denoiser Controlling Heterogeneous Losses
por: Cho, Sung In, et al.
Publicado: (2021)