Cargando…

Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy

Treatment of medically intractable focal epilepsy (MIFE) by surgical resection of the epileptogenic zone (EZ) is often effective provided the EZ can be reliably identified. Even with the use of invasive recordings, the clinical differentiation between the EZ and normal brain areas can be quite chall...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Adam, Chennuri, Bhaskar, Subramanian, Sandya, Yaffe, Robert, Gliske, Steve, Stacey, William, Norton, Robert, Jordan, Austin, Zaghloul, Kareem A., Inati, Sara K., Agrawal, Shubhi, Haagensen, Jennifer J., Hopp, Jennifer, Atallah, Chalita, Johnson, Emily, Crone, Nathan, Anderson, William S., Fitzgerald, Zach, Bulacio, Juan, Gale, John T., Sarma, Sridevi V., Gonzalez-Martinez, Jorge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MIT Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130438/
https://www.ncbi.nlm.nih.gov/pubmed/30215034
http://dx.doi.org/10.1162/netn_a_00043
_version_ 1783353931283300352
author Li, Adam
Chennuri, Bhaskar
Subramanian, Sandya
Yaffe, Robert
Gliske, Steve
Stacey, William
Norton, Robert
Jordan, Austin
Zaghloul, Kareem A.
Inati, Sara K.
Agrawal, Shubhi
Haagensen, Jennifer J.
Hopp, Jennifer
Atallah, Chalita
Johnson, Emily
Crone, Nathan
Anderson, William S.
Fitzgerald, Zach
Bulacio, Juan
Gale, John T.
Sarma, Sridevi V.
Gonzalez-Martinez, Jorge
author_facet Li, Adam
Chennuri, Bhaskar
Subramanian, Sandya
Yaffe, Robert
Gliske, Steve
Stacey, William
Norton, Robert
Jordan, Austin
Zaghloul, Kareem A.
Inati, Sara K.
Agrawal, Shubhi
Haagensen, Jennifer J.
Hopp, Jennifer
Atallah, Chalita
Johnson, Emily
Crone, Nathan
Anderson, William S.
Fitzgerald, Zach
Bulacio, Juan
Gale, John T.
Sarma, Sridevi V.
Gonzalez-Martinez, Jorge
author_sort Li, Adam
collection PubMed
description Treatment of medically intractable focal epilepsy (MIFE) by surgical resection of the epileptogenic zone (EZ) is often effective provided the EZ can be reliably identified. Even with the use of invasive recordings, the clinical differentiation between the EZ and normal brain areas can be quite challenging, mainly in patients without MRI detectable lesions. Consequently, despite relatively large brain regions being removed, surgical success rates barely reach 60–65%. Such variable and unfavorable outcomes associated with high morbidity rates are often caused by imprecise and/or inaccurate EZ localization. We developed a localization algorithm that uses network-based data analytics to process invasive EEG recordings. This network algorithm analyzes the centrality signatures of every contact electrode within the recording network and characterizes contacts into susceptible EZ based on the centrality trends over time. The algorithm was tested in a retrospective study that included 42 patients from four epilepsy centers. Our algorithm had higher agreement with EZ regions identified by clinicians for patients with successful surgical outcomes and less agreement for patients with failed outcomes. These findings suggest that network analytics and a network systems perspective of epilepsy may be useful in assisting clinicians in more accurately localizing the EZ.
format Online
Article
Text
id pubmed-6130438
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MIT Press
record_format MEDLINE/PubMed
spelling pubmed-61304382018-09-11 Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy Li, Adam Chennuri, Bhaskar Subramanian, Sandya Yaffe, Robert Gliske, Steve Stacey, William Norton, Robert Jordan, Austin Zaghloul, Kareem A. Inati, Sara K. Agrawal, Shubhi Haagensen, Jennifer J. Hopp, Jennifer Atallah, Chalita Johnson, Emily Crone, Nathan Anderson, William S. Fitzgerald, Zach Bulacio, Juan Gale, John T. Sarma, Sridevi V. Gonzalez-Martinez, Jorge Netw Neurosci Research Treatment of medically intractable focal epilepsy (MIFE) by surgical resection of the epileptogenic zone (EZ) is often effective provided the EZ can be reliably identified. Even with the use of invasive recordings, the clinical differentiation between the EZ and normal brain areas can be quite challenging, mainly in patients without MRI detectable lesions. Consequently, despite relatively large brain regions being removed, surgical success rates barely reach 60–65%. Such variable and unfavorable outcomes associated with high morbidity rates are often caused by imprecise and/or inaccurate EZ localization. We developed a localization algorithm that uses network-based data analytics to process invasive EEG recordings. This network algorithm analyzes the centrality signatures of every contact electrode within the recording network and characterizes contacts into susceptible EZ based on the centrality trends over time. The algorithm was tested in a retrospective study that included 42 patients from four epilepsy centers. Our algorithm had higher agreement with EZ regions identified by clinicians for patients with successful surgical outcomes and less agreement for patients with failed outcomes. These findings suggest that network analytics and a network systems perspective of epilepsy may be useful in assisting clinicians in more accurately localizing the EZ. MIT Press 2018-06-01 /pmc/articles/PMC6130438/ /pubmed/30215034 http://dx.doi.org/10.1162/netn_a_00043 Text en © 2018 Massachusetts Institute of Technology http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Li, Adam
Chennuri, Bhaskar
Subramanian, Sandya
Yaffe, Robert
Gliske, Steve
Stacey, William
Norton, Robert
Jordan, Austin
Zaghloul, Kareem A.
Inati, Sara K.
Agrawal, Shubhi
Haagensen, Jennifer J.
Hopp, Jennifer
Atallah, Chalita
Johnson, Emily
Crone, Nathan
Anderson, William S.
Fitzgerald, Zach
Bulacio, Juan
Gale, John T.
Sarma, Sridevi V.
Gonzalez-Martinez, Jorge
Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy
title Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy
title_full Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy
title_fullStr Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy
title_full_unstemmed Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy
title_short Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy
title_sort using network analysis to localize the epileptogenic zone from invasive eeg recordings in intractable focal epilepsy
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130438/
https://www.ncbi.nlm.nih.gov/pubmed/30215034
http://dx.doi.org/10.1162/netn_a_00043
work_keys_str_mv AT liadam usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT chennuribhaskar usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT subramaniansandya usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT yafferobert usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT gliskesteve usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT staceywilliam usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT nortonrobert usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT jordanaustin usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT zaghloulkareema usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT inatisarak usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT agrawalshubhi usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT haagensenjenniferj usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT hoppjennifer usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT atallahchalita usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT johnsonemily usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT cronenathan usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT andersonwilliams usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT fitzgeraldzach usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT bulaciojuan usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT galejohnt usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT sarmasrideviv usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy
AT gonzalezmartinezjorge usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy