Cargando…
Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy
Treatment of medically intractable focal epilepsy (MIFE) by surgical resection of the epileptogenic zone (EZ) is often effective provided the EZ can be reliably identified. Even with the use of invasive recordings, the clinical differentiation between the EZ and normal brain areas can be quite chall...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130438/ https://www.ncbi.nlm.nih.gov/pubmed/30215034 http://dx.doi.org/10.1162/netn_a_00043 |
_version_ | 1783353931283300352 |
---|---|
author | Li, Adam Chennuri, Bhaskar Subramanian, Sandya Yaffe, Robert Gliske, Steve Stacey, William Norton, Robert Jordan, Austin Zaghloul, Kareem A. Inati, Sara K. Agrawal, Shubhi Haagensen, Jennifer J. Hopp, Jennifer Atallah, Chalita Johnson, Emily Crone, Nathan Anderson, William S. Fitzgerald, Zach Bulacio, Juan Gale, John T. Sarma, Sridevi V. Gonzalez-Martinez, Jorge |
author_facet | Li, Adam Chennuri, Bhaskar Subramanian, Sandya Yaffe, Robert Gliske, Steve Stacey, William Norton, Robert Jordan, Austin Zaghloul, Kareem A. Inati, Sara K. Agrawal, Shubhi Haagensen, Jennifer J. Hopp, Jennifer Atallah, Chalita Johnson, Emily Crone, Nathan Anderson, William S. Fitzgerald, Zach Bulacio, Juan Gale, John T. Sarma, Sridevi V. Gonzalez-Martinez, Jorge |
author_sort | Li, Adam |
collection | PubMed |
description | Treatment of medically intractable focal epilepsy (MIFE) by surgical resection of the epileptogenic zone (EZ) is often effective provided the EZ can be reliably identified. Even with the use of invasive recordings, the clinical differentiation between the EZ and normal brain areas can be quite challenging, mainly in patients without MRI detectable lesions. Consequently, despite relatively large brain regions being removed, surgical success rates barely reach 60–65%. Such variable and unfavorable outcomes associated with high morbidity rates are often caused by imprecise and/or inaccurate EZ localization. We developed a localization algorithm that uses network-based data analytics to process invasive EEG recordings. This network algorithm analyzes the centrality signatures of every contact electrode within the recording network and characterizes contacts into susceptible EZ based on the centrality trends over time. The algorithm was tested in a retrospective study that included 42 patients from four epilepsy centers. Our algorithm had higher agreement with EZ regions identified by clinicians for patients with successful surgical outcomes and less agreement for patients with failed outcomes. These findings suggest that network analytics and a network systems perspective of epilepsy may be useful in assisting clinicians in more accurately localizing the EZ. |
format | Online Article Text |
id | pubmed-6130438 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MIT Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-61304382018-09-11 Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy Li, Adam Chennuri, Bhaskar Subramanian, Sandya Yaffe, Robert Gliske, Steve Stacey, William Norton, Robert Jordan, Austin Zaghloul, Kareem A. Inati, Sara K. Agrawal, Shubhi Haagensen, Jennifer J. Hopp, Jennifer Atallah, Chalita Johnson, Emily Crone, Nathan Anderson, William S. Fitzgerald, Zach Bulacio, Juan Gale, John T. Sarma, Sridevi V. Gonzalez-Martinez, Jorge Netw Neurosci Research Treatment of medically intractable focal epilepsy (MIFE) by surgical resection of the epileptogenic zone (EZ) is often effective provided the EZ can be reliably identified. Even with the use of invasive recordings, the clinical differentiation between the EZ and normal brain areas can be quite challenging, mainly in patients without MRI detectable lesions. Consequently, despite relatively large brain regions being removed, surgical success rates barely reach 60–65%. Such variable and unfavorable outcomes associated with high morbidity rates are often caused by imprecise and/or inaccurate EZ localization. We developed a localization algorithm that uses network-based data analytics to process invasive EEG recordings. This network algorithm analyzes the centrality signatures of every contact electrode within the recording network and characterizes contacts into susceptible EZ based on the centrality trends over time. The algorithm was tested in a retrospective study that included 42 patients from four epilepsy centers. Our algorithm had higher agreement with EZ regions identified by clinicians for patients with successful surgical outcomes and less agreement for patients with failed outcomes. These findings suggest that network analytics and a network systems perspective of epilepsy may be useful in assisting clinicians in more accurately localizing the EZ. MIT Press 2018-06-01 /pmc/articles/PMC6130438/ /pubmed/30215034 http://dx.doi.org/10.1162/netn_a_00043 Text en © 2018 Massachusetts Institute of Technology http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Li, Adam Chennuri, Bhaskar Subramanian, Sandya Yaffe, Robert Gliske, Steve Stacey, William Norton, Robert Jordan, Austin Zaghloul, Kareem A. Inati, Sara K. Agrawal, Shubhi Haagensen, Jennifer J. Hopp, Jennifer Atallah, Chalita Johnson, Emily Crone, Nathan Anderson, William S. Fitzgerald, Zach Bulacio, Juan Gale, John T. Sarma, Sridevi V. Gonzalez-Martinez, Jorge Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy |
title | Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy |
title_full | Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy |
title_fullStr | Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy |
title_full_unstemmed | Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy |
title_short | Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy |
title_sort | using network analysis to localize the epileptogenic zone from invasive eeg recordings in intractable focal epilepsy |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130438/ https://www.ncbi.nlm.nih.gov/pubmed/30215034 http://dx.doi.org/10.1162/netn_a_00043 |
work_keys_str_mv | AT liadam usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT chennuribhaskar usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT subramaniansandya usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT yafferobert usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT gliskesteve usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT staceywilliam usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT nortonrobert usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT jordanaustin usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT zaghloulkareema usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT inatisarak usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT agrawalshubhi usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT haagensenjenniferj usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT hoppjennifer usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT atallahchalita usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT johnsonemily usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT cronenathan usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT andersonwilliams usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT fitzgeraldzach usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT bulaciojuan usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT galejohnt usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT sarmasrideviv usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy AT gonzalezmartinezjorge usingnetworkanalysistolocalizetheepileptogeniczonefrominvasiveeegrecordingsinintractablefocalepilepsy |