Cargando…
4-Nerolidylcatechol: apoptosis by mitochondrial mechanisms with reduction in cyclin D1 at G0/G1 stage of the chronic myelogenous K562 cell line
Context: 4-Nerolidylcatechol (4-NRC) has showed antitumor potential through apoptosis. However, its apoptotic mechanisms are still unclear, especially in leukemic cells. Objectives: To evaluate the cytotoxic potential of 4-NRC and its cell death pathways in p53-null K562 leukemic cells. Materials an...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130688/ https://www.ncbi.nlm.nih.gov/pubmed/28644062 http://dx.doi.org/10.1080/13880209.2017.1311351 |
Sumario: | Context: 4-Nerolidylcatechol (4-NRC) has showed antitumor potential through apoptosis. However, its apoptotic mechanisms are still unclear, especially in leukemic cells. Objectives: To evaluate the cytotoxic potential of 4-NRC and its cell death pathways in p53-null K562 leukemic cells. Materials and methods: Cytotoxicity of 4-NRC (4.17–534.5 μM) over 24 h of exposure was evaluated by MTT assay. 4-NRC-induced apoptosis in K562 cells was investigated by phosphatidylserine (PS) externalization, cell cycle, sub-G1, mitochondrial evaluation, cytochrome c, cyclin D1 and intracellular reactive oxygen species (ROS) levels, and caspase activity analysis. Results: IC(50) values obtained were 11.40, 27.31, 15.93 and 15.70 μM for lymphocytes, K562, HL-60 and Jurkat cells, respectively. In K562 cells, 4-NRC (27 μM) promoted apoptosis as verified by cellular morphological changes, a significant increase in PS externalization and sub-G1 cells. Moreover, it significantly arrested the cells at the G0/G1 phase due to a reduction in cyclin D1 expression. These effects of 4-NRC also significantly promoted a reduction in mitochondrial activity and membrane depolarization, accumulation of cytosolic cytochrome c and ROS overproduction. Additionally, it triggered an increase in caspases -3/7, -8 and -9 activities. When the cells were pretreated with N-acetyl-l-cysteine ROS scavenger, 4-NRC-induced apoptosis was partially blocked, which suggests that it exerts cytotoxicity though not exclusively through ROS-mediated mechanisms. Discussion and conclusion: 4-NRC has antileukemic properties, inducing apoptosis mediated by mitochondrial-dependent mechanisms with cyclin D1 inhibition. Given that emerging treatment concepts include novel combinations of well-known agents, 4-NRC could offer a promising alternative for chemotherapeutic combinations to maximize tumour suppression. |
---|