Cargando…

Therapeutic opportunities for pain medicines via targeting of specific translation signaling mechanisms

As the population of the world ages and as more and more people survive diseases that used to be primary causes of mortality, the incidence of severe chronic pain in most of the world has risen dramatically. This type of pain is very difficult to treat and the opioid overdose epidemic that has becom...

Descripción completa

Detalles Bibliográficos
Autores principales: Megat, Salim, Price, Theodore J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130820/
https://www.ncbi.nlm.nih.gov/pubmed/30211342
http://dx.doi.org/10.1016/j.ynpai.2018.02.001
_version_ 1783354013245243392
author Megat, Salim
Price, Theodore J.
author_facet Megat, Salim
Price, Theodore J.
author_sort Megat, Salim
collection PubMed
description As the population of the world ages and as more and more people survive diseases that used to be primary causes of mortality, the incidence of severe chronic pain in most of the world has risen dramatically. This type of pain is very difficult to treat and the opioid overdose epidemic that has become a leading cause of death in the United States and other parts of the world highlights the urgent need to develop new pain therapeutics. A common underlying cause of severe chronic pain is a phenotypic change in pain-sensing neurons in the peripheral nervous system called nociceptors. These neurons play a vital role in detecting potentially injurious stimuli, but when these neurons start to detect very low levels of inflammatory meditators or become spontaneously active, they send spurious pain signals to the brain that are significant drivers of chronic pain. An important question is what drives this phenotypic shift in nociceptors from quiescence under most conditions to sensitization to a broad variety of stimuli and spontaneous activity. The goal of this review is to discuss the critical role that specific translation regulation signaling pathways play in controlling gene expression changes that drive nociceptor sensitization and may underlie the development of spontaneous activity. The focus will be on advances in technologies that allow for identification of such targets and on developments in pharmacology around translation regulation signaling that may yield new pain therapeutics. A key advantage of pharmacological manipulation of these signaling events is that they may reverse phenotypic shifts in nociceptors that drive chronic pain thereby creating the first generation of disease modifying drugs for chronic pain.
format Online
Article
Text
id pubmed-6130820
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-61308202018-09-10 Therapeutic opportunities for pain medicines via targeting of specific translation signaling mechanisms Megat, Salim Price, Theodore J. Neurobiol Pain Review As the population of the world ages and as more and more people survive diseases that used to be primary causes of mortality, the incidence of severe chronic pain in most of the world has risen dramatically. This type of pain is very difficult to treat and the opioid overdose epidemic that has become a leading cause of death in the United States and other parts of the world highlights the urgent need to develop new pain therapeutics. A common underlying cause of severe chronic pain is a phenotypic change in pain-sensing neurons in the peripheral nervous system called nociceptors. These neurons play a vital role in detecting potentially injurious stimuli, but when these neurons start to detect very low levels of inflammatory meditators or become spontaneously active, they send spurious pain signals to the brain that are significant drivers of chronic pain. An important question is what drives this phenotypic shift in nociceptors from quiescence under most conditions to sensitization to a broad variety of stimuli and spontaneous activity. The goal of this review is to discuss the critical role that specific translation regulation signaling pathways play in controlling gene expression changes that drive nociceptor sensitization and may underlie the development of spontaneous activity. The focus will be on advances in technologies that allow for identification of such targets and on developments in pharmacology around translation regulation signaling that may yield new pain therapeutics. A key advantage of pharmacological manipulation of these signaling events is that they may reverse phenotypic shifts in nociceptors that drive chronic pain thereby creating the first generation of disease modifying drugs for chronic pain. Elsevier 2018-02-23 /pmc/articles/PMC6130820/ /pubmed/30211342 http://dx.doi.org/10.1016/j.ynpai.2018.02.001 Text en © 2018 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Review
Megat, Salim
Price, Theodore J.
Therapeutic opportunities for pain medicines via targeting of specific translation signaling mechanisms
title Therapeutic opportunities for pain medicines via targeting of specific translation signaling mechanisms
title_full Therapeutic opportunities for pain medicines via targeting of specific translation signaling mechanisms
title_fullStr Therapeutic opportunities for pain medicines via targeting of specific translation signaling mechanisms
title_full_unstemmed Therapeutic opportunities for pain medicines via targeting of specific translation signaling mechanisms
title_short Therapeutic opportunities for pain medicines via targeting of specific translation signaling mechanisms
title_sort therapeutic opportunities for pain medicines via targeting of specific translation signaling mechanisms
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130820/
https://www.ncbi.nlm.nih.gov/pubmed/30211342
http://dx.doi.org/10.1016/j.ynpai.2018.02.001
work_keys_str_mv AT megatsalim therapeuticopportunitiesforpainmedicinesviatargetingofspecifictranslationsignalingmechanisms
AT pricetheodorej therapeuticopportunitiesforpainmedicinesviatargetingofspecifictranslationsignalingmechanisms