Cargando…

A new model to predict major bleeding in patients with atrial fibrillation using warfarin or direct oral anticoagulants

BACKGROUND: No scores presently exist to predict bleeding in atrial fibrillation (AF) populations using direct oral anticoagulants (DOACs). We used data from two independent healthcare claims databases to develop and validate a predictive model of major bleeding in a contemporary AF population. METH...

Descripción completa

Detalles Bibliográficos
Autores principales: Claxton, J’Neka S., MacLehose, Richard F., Lutsey, Pamela L., Norby, Faye L., Chen, Lin Y., O’Neal, Wesley T., Chamberlain, Alanna M., Bengtson, Lindsay G. S., Alonso, Alvaro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130859/
https://www.ncbi.nlm.nih.gov/pubmed/30199542
http://dx.doi.org/10.1371/journal.pone.0203599
_version_ 1783354019692937216
author Claxton, J’Neka S.
MacLehose, Richard F.
Lutsey, Pamela L.
Norby, Faye L.
Chen, Lin Y.
O’Neal, Wesley T.
Chamberlain, Alanna M.
Bengtson, Lindsay G. S.
Alonso, Alvaro
author_facet Claxton, J’Neka S.
MacLehose, Richard F.
Lutsey, Pamela L.
Norby, Faye L.
Chen, Lin Y.
O’Neal, Wesley T.
Chamberlain, Alanna M.
Bengtson, Lindsay G. S.
Alonso, Alvaro
author_sort Claxton, J’Neka S.
collection PubMed
description BACKGROUND: No scores presently exist to predict bleeding in atrial fibrillation (AF) populations using direct oral anticoagulants (DOACs). We used data from two independent healthcare claims databases to develop and validate a predictive model of major bleeding in a contemporary AF population. METHODS: Patients with non-valvular AF initiating oral anticoagulation were identified in the MarketScan databases from 2007–2014. Using Cox regression models in 1000 bootstrapped samples, we developed a model that selected variables predicting major bleeding in the first year after anticoagulant initiation. The final model was validated in patients with non-valvular AF in the Optum Clinformatics database in the period 2009–2015. The discriminative ability of existing bleeding scores were individually evaluated and compared with the new bleeding model termed Anticoagulation-specific Bleeding Score (ABS) in both MarketScan and Optum. RESULTS: Among 119,083 patients with AF initiating oral anticoagulation in the derivation cohort, 4,030 experienced a bleeding event. The variable selection model identified 15 variables (including individual type of oral anticoagulant) associated with major bleeding. Discrimination of the model was modest [c-statistic 0.68, 95% confidence interval (CI) 0.67–0.69]. The model was subsequently applied to 81,285 AF patients in the validation data set (3,238 bleeding events), showing similar discrimination (c-statistic 0.68, 95% CI 0.67–0.69). In both cohorts, the predictive performance of the ABS was better than the existing models for bleeding prediction in AF. CONCLUSIONS: We developed a model that uses administrative healthcare data for the identification of AF patients at higher risk of bleeding after initiation of oral anticoagulation, taking into account the lower bleeding risk in DOAC compared to warfarin users.
format Online
Article
Text
id pubmed-6130859
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-61308592018-09-15 A new model to predict major bleeding in patients with atrial fibrillation using warfarin or direct oral anticoagulants Claxton, J’Neka S. MacLehose, Richard F. Lutsey, Pamela L. Norby, Faye L. Chen, Lin Y. O’Neal, Wesley T. Chamberlain, Alanna M. Bengtson, Lindsay G. S. Alonso, Alvaro PLoS One Research Article BACKGROUND: No scores presently exist to predict bleeding in atrial fibrillation (AF) populations using direct oral anticoagulants (DOACs). We used data from two independent healthcare claims databases to develop and validate a predictive model of major bleeding in a contemporary AF population. METHODS: Patients with non-valvular AF initiating oral anticoagulation were identified in the MarketScan databases from 2007–2014. Using Cox regression models in 1000 bootstrapped samples, we developed a model that selected variables predicting major bleeding in the first year after anticoagulant initiation. The final model was validated in patients with non-valvular AF in the Optum Clinformatics database in the period 2009–2015. The discriminative ability of existing bleeding scores were individually evaluated and compared with the new bleeding model termed Anticoagulation-specific Bleeding Score (ABS) in both MarketScan and Optum. RESULTS: Among 119,083 patients with AF initiating oral anticoagulation in the derivation cohort, 4,030 experienced a bleeding event. The variable selection model identified 15 variables (including individual type of oral anticoagulant) associated with major bleeding. Discrimination of the model was modest [c-statistic 0.68, 95% confidence interval (CI) 0.67–0.69]. The model was subsequently applied to 81,285 AF patients in the validation data set (3,238 bleeding events), showing similar discrimination (c-statistic 0.68, 95% CI 0.67–0.69). In both cohorts, the predictive performance of the ABS was better than the existing models for bleeding prediction in AF. CONCLUSIONS: We developed a model that uses administrative healthcare data for the identification of AF patients at higher risk of bleeding after initiation of oral anticoagulation, taking into account the lower bleeding risk in DOAC compared to warfarin users. Public Library of Science 2018-09-10 /pmc/articles/PMC6130859/ /pubmed/30199542 http://dx.doi.org/10.1371/journal.pone.0203599 Text en © 2018 Claxton et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Claxton, J’Neka S.
MacLehose, Richard F.
Lutsey, Pamela L.
Norby, Faye L.
Chen, Lin Y.
O’Neal, Wesley T.
Chamberlain, Alanna M.
Bengtson, Lindsay G. S.
Alonso, Alvaro
A new model to predict major bleeding in patients with atrial fibrillation using warfarin or direct oral anticoagulants
title A new model to predict major bleeding in patients with atrial fibrillation using warfarin or direct oral anticoagulants
title_full A new model to predict major bleeding in patients with atrial fibrillation using warfarin or direct oral anticoagulants
title_fullStr A new model to predict major bleeding in patients with atrial fibrillation using warfarin or direct oral anticoagulants
title_full_unstemmed A new model to predict major bleeding in patients with atrial fibrillation using warfarin or direct oral anticoagulants
title_short A new model to predict major bleeding in patients with atrial fibrillation using warfarin or direct oral anticoagulants
title_sort new model to predict major bleeding in patients with atrial fibrillation using warfarin or direct oral anticoagulants
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130859/
https://www.ncbi.nlm.nih.gov/pubmed/30199542
http://dx.doi.org/10.1371/journal.pone.0203599
work_keys_str_mv AT claxtonjnekas anewmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT maclehoserichardf anewmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT lutseypamelal anewmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT norbyfayel anewmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT chenliny anewmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT onealwesleyt anewmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT chamberlainalannam anewmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT bengtsonlindsaygs anewmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT alonsoalvaro anewmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT claxtonjnekas newmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT maclehoserichardf newmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT lutseypamelal newmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT norbyfayel newmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT chenliny newmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT onealwesleyt newmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT chamberlainalannam newmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT bengtsonlindsaygs newmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants
AT alonsoalvaro newmodeltopredictmajorbleedinginpatientswithatrialfibrillationusingwarfarinordirectoralanticoagulants