Cargando…
General differential Hebbian learning: Capturing temporal relations between events in neural networks and the brain
Learning in biologically relevant neural-network models usually relies on Hebb learning rules. The typical implementations of these rules change the synaptic strength on the basis of the co-occurrence of the neural events taking place at a certain time in the pre- and post-synaptic neurons. Differen...
Autores principales: | Zappacosta, Stefano, Mannella, Francesco, Mirolli, Marco, Baldassarre, Gianluca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130884/ https://www.ncbi.nlm.nih.gov/pubmed/30153263 http://dx.doi.org/10.1371/journal.pcbi.1006227 |
Ejemplares similares
-
Goal-Directed Behavior and Instrumental Devaluation: A Neural System-Level Computational Model
por: Mannella, Francesco, et al.
Publicado: (2016) -
Learning cortical hierarchies with temporal Hebbian updates
por: Aceituno, Pau Vilimelis, et al.
Publicado: (2023) -
Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks
por: Panda, Priyadarshini, et al.
Publicado: (2017) -
Hebbian learning of context in recurrent neural networks
por: Brunnel, N
Publicado: (1995) -
Keep focussing: striatal dopamine multiple functions resolved in a single mechanism tested in a simulated humanoid robot
por: Fiore, Vincenzo G., et al.
Publicado: (2014)