Cargando…

Effect of 3-nitropropionic acid inducing oxidative stress and apoptosis of granulosa cells in geese

The mechanism of action by which oxidative stress induces granulosa cell apoptosis, which plays a vital role in initiating follicular atresia, is not well understood. In the present study, the effect of 3-nitropropionic acid (3-NPA) on oxidative stress and apoptosis in granulosa cells in geese was i...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Bo, Wang, Xinxing, Xu, Qilin, Wu, Yongsheng, Si, Xiaohui, Jiang, Dongmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6131328/
https://www.ncbi.nlm.nih.gov/pubmed/30042167
http://dx.doi.org/10.1042/BSR20180274
Descripción
Sumario:The mechanism of action by which oxidative stress induces granulosa cell apoptosis, which plays a vital role in initiating follicular atresia, is not well understood. In the present study, the effect of 3-nitropropionic acid (3-NPA) on oxidative stress and apoptosis in granulosa cells in geese was investigated. Our results showed that treatment with 3-NPA at 5.0 mmol/l for 24 h increased intracellular reactive oxygen species (ROS) production by 25.4% and decreased granulosa cell viability by 45.5% (P<0.05). Catalase and glutathione peroxidase gene expression levels in granulosa cells treated with 3-NPA were 1.32- and 0.49-fold compared with those of the control cells, respectively (P <0.05). A significant decrease in the expression level of B-cell lymphoma 2 (Bcl-2) protein and remarkable increases in the levels of Bax, p53 and cleaved-Caspase 3 proteins and the ratio of Bax/Bcl-2 expression in granulosa cells treated with 3-NPA were observed (P<0.05). Furthermore, a 38.43% increase in the percentage of early apoptotic cells was also observed in granulosa cells treated with 3-NPA (P<0.05). Moreover, the expression levels of NF-κB, Nrf2, Fhc, Hspa2 and Ho-1 in granulosa cells treated with 3-NPA were elevated 4.36-, 1.63-, 3.62-, 27.54- and 10.48-fold compared with those of the control cells (P<0.05), respectively. In conclusion, the present study demonstrates that treatment with 3-NPA induces ROS production and apoptosis and inhibits the viability of granulosa cells in geese. Furthermore, 3-NPA triggers increases in the expression of cleaved-Caspase 3 protein and the ratio of Bax/Bcl-2 expression, and induces the early apoptosis of granulosa cells.