Cargando…
Identification of differentially expressed genes by means of outlier detection
BACKGROUND: An important issue in microarray data is to select, from thousands of genes, a small number of informative differentially expressed (DE) genes which may be key elements for a disease. If each gene is analyzed individually, there is a big number of hypotheses to test and a multiple compar...
Autores principales: | Irigoien, Itziar, Arenas, Concepción |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6131896/ https://www.ncbi.nlm.nih.gov/pubmed/30200879 http://dx.doi.org/10.1186/s12859-018-2318-8 |
Ejemplares similares
-
LSOSS: Detection of Cancer Outlier Differential Gene Expression
por: Wang, Yupeng, et al.
Publicado: (2010) -
ICGE: an R package for detecting relevant clusters and atypical units in gene expression
por: Irigoien, Itziar, et al.
Publicado: (2012) -
ORdensity: user-friendly R package to identify differentially expressed genes
por: Martínez-Otzeta, José María, et al.
Publicado: (2020) -
Prediction of heterogeneous differential genes by detecting outliers to a Gaussian tight cluster
por: Yang, Zihua, et al.
Publicado: (2013) -
Robust volcano plot: identification of differential metabolites in the presence of outliers
por: Kumar, Nishith, et al.
Publicado: (2018)