Cargando…

Differential signaling pathway activation in 7,12-dimethylbenz[a] anthracene (DMBA)-treated mammary stem/progenitor cells from species with varying mammary cancer incidence

A natural variation exists in the susceptibility to mammary cancer among wild and domestic mammalian species. Mammary stem/progenitor cells (MaSC) represent a primary target cell for transformation; however, little is known about the intrinsic response of these cells to carcinogenic insults. Polycyc...

Descripción completa

Detalles Bibliográficos
Autores principales: Ledet, Melissa M., Oswald, Meghan, Anderson, Robyn, Van de Walle, Gerlinde R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6132353/
https://www.ncbi.nlm.nih.gov/pubmed/30214683
http://dx.doi.org/10.18632/oncotarget.25988
Descripción
Sumario:A natural variation exists in the susceptibility to mammary cancer among wild and domestic mammalian species. Mammary stem/progenitor cells (MaSC) represent a primary target cell for transformation; however, little is known about the intrinsic response of these cells to carcinogenic insults. Polycyclic aromatic hydrocarbons (PAH), such as 7,12-dimethylbenz[a]anthracene (DMBA), are abundantly present in the environment and have been linked to the development of mammary cancer in humans and rodents. We treated MaSC from equine (mammary cancer-resistant) and canine (mammary cancer-susceptible) species with DMBA and assessed cytochrome P450 metabolic activity, DNA damage and viability. Our notable findings were that MaSC from both species showed DNA damage following DMBA treatment; however, equine MaSC initiated cell death whereas canine MaSC repaired this DNA damage. Follow-up studies, based on genome-wide transcriptome analyses, revealed that DMBA induced activation of both the intrinsic and extrinsic apoptotic pathways in equine, but not canine, MaSC. Based on these findings, we propose a hypothetical model in which undergoing apoptosis in response to an oncogenic event might contribute to a lower incidence of mammary cancer in certain mammalian species. Such a mechanism would allow for the elimination of DNA-damaged MaSC, and hence, reduce the risk of potential tumor-initiating mutations in these cells.