Cargando…
Some mean convergence theorems for arrays of rowwise pairwise negative quadrant dependent random variables
For arrays of rowwise pairwise negative quadrant dependent random variables, conditions are provided under which weighted averages converge in mean to 0 thereby extending a result of Chandra, and conditions are also provided under which normed and centered row sums converge in mean to 0. These resul...
Autores principales: | Chandra, Tapas K., Li, Deli, Rosalsky, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6132388/ https://www.ncbi.nlm.nih.gov/pubmed/30839650 http://dx.doi.org/10.1186/s13660-018-1811-y |
Ejemplares similares
-
Complete Moment Convergence and Mean Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables
por: Wu, Yongfeng, et al.
Publicado: (2014) -
Some limit theorems for weighted negative quadrant dependent random variables with infinite mean
por: Ma, Fuqiang, et al.
Publicado: (2018) -
Stable convergence and stable limit theorems
por: Häusler, Erich, et al.
Publicado: (2015) -
On the Exponential Inequality for Weighted Sums of a Class of Linearly Negative Quadrant Dependent Random Variables
por: Xing, Guodong, et al.
Publicado: (2014) -
Strong convergence theorems for coordinatewise negatively associated random vectors in Hilbert space
por: Huang, Xiang, et al.
Publicado: (2018)