Cargando…
Robust and semantic needle detection in 3D ultrasound using orthogonal-plane convolutional neural networks
PURPOSE: During needle interventions, successful automated detection of the needle immediately after insertion is necessary to allow the physician identify and correct any misalignment of the needle and the target at early stages, which reduces needle passes and improves health outcomes. METHODS: We...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6132402/ https://www.ncbi.nlm.nih.gov/pubmed/29855770 http://dx.doi.org/10.1007/s11548-018-1798-3 |
_version_ | 1783354313638150144 |
---|---|
author | Pourtaherian, Arash Ghazvinian Zanjani, Farhad Zinger, Svitlana Mihajlovic, Nenad Ng, Gary C. Korsten, Hendrikus H. M. de With, Peter H. N. |
author_facet | Pourtaherian, Arash Ghazvinian Zanjani, Farhad Zinger, Svitlana Mihajlovic, Nenad Ng, Gary C. Korsten, Hendrikus H. M. de With, Peter H. N. |
author_sort | Pourtaherian, Arash |
collection | PubMed |
description | PURPOSE: During needle interventions, successful automated detection of the needle immediately after insertion is necessary to allow the physician identify and correct any misalignment of the needle and the target at early stages, which reduces needle passes and improves health outcomes. METHODS: We present a novel approach to localize partially inserted needles in 3D ultrasound volume with high precision using convolutional neural networks. We propose two methods based on patch classification and semantic segmentation of the needle from orthogonal 2D cross-sections extracted from the volume. For patch classification, each voxel is classified from locally extracted raw data of three orthogonal planes centered on it. We propose a bootstrap resampling approach to enhance the training in our highly imbalanced data. For semantic segmentation, parts of a needle are detected in cross-sections perpendicular to the lateral and elevational axes. We propose to exploit the structural information in the data with a novel thick-slice processing approach for efficient modeling of the context. RESULTS: Our introduced methods successfully detect 17 and 22 G needles with a single trained network, showing a robust generalized approach. Extensive ex-vivo evaluations on datasets of chicken breast and porcine leg show 80 and 84% F1-scores, respectively. Furthermore, very short needles are detected with tip localization errors of less than 0.7 mm for lengths of only 5 and 10 mm at 0.2 and 0.36 mm voxel sizes, respectively. CONCLUSION: Our method is able to accurately detect even very short needles, ensuring that the needle and its tip are maximally visible in the visualized plane during the entire intervention, thereby eliminating the need for advanced bi-manual coordination of the needle and transducer. |
format | Online Article Text |
id | pubmed-6132402 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-61324022018-09-14 Robust and semantic needle detection in 3D ultrasound using orthogonal-plane convolutional neural networks Pourtaherian, Arash Ghazvinian Zanjani, Farhad Zinger, Svitlana Mihajlovic, Nenad Ng, Gary C. Korsten, Hendrikus H. M. de With, Peter H. N. Int J Comput Assist Radiol Surg Original Article PURPOSE: During needle interventions, successful automated detection of the needle immediately after insertion is necessary to allow the physician identify and correct any misalignment of the needle and the target at early stages, which reduces needle passes and improves health outcomes. METHODS: We present a novel approach to localize partially inserted needles in 3D ultrasound volume with high precision using convolutional neural networks. We propose two methods based on patch classification and semantic segmentation of the needle from orthogonal 2D cross-sections extracted from the volume. For patch classification, each voxel is classified from locally extracted raw data of three orthogonal planes centered on it. We propose a bootstrap resampling approach to enhance the training in our highly imbalanced data. For semantic segmentation, parts of a needle are detected in cross-sections perpendicular to the lateral and elevational axes. We propose to exploit the structural information in the data with a novel thick-slice processing approach for efficient modeling of the context. RESULTS: Our introduced methods successfully detect 17 and 22 G needles with a single trained network, showing a robust generalized approach. Extensive ex-vivo evaluations on datasets of chicken breast and porcine leg show 80 and 84% F1-scores, respectively. Furthermore, very short needles are detected with tip localization errors of less than 0.7 mm for lengths of only 5 and 10 mm at 0.2 and 0.36 mm voxel sizes, respectively. CONCLUSION: Our method is able to accurately detect even very short needles, ensuring that the needle and its tip are maximally visible in the visualized plane during the entire intervention, thereby eliminating the need for advanced bi-manual coordination of the needle and transducer. Springer International Publishing 2018-05-31 2018 /pmc/articles/PMC6132402/ /pubmed/29855770 http://dx.doi.org/10.1007/s11548-018-1798-3 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Pourtaherian, Arash Ghazvinian Zanjani, Farhad Zinger, Svitlana Mihajlovic, Nenad Ng, Gary C. Korsten, Hendrikus H. M. de With, Peter H. N. Robust and semantic needle detection in 3D ultrasound using orthogonal-plane convolutional neural networks |
title | Robust and semantic needle detection in 3D ultrasound using orthogonal-plane convolutional neural networks |
title_full | Robust and semantic needle detection in 3D ultrasound using orthogonal-plane convolutional neural networks |
title_fullStr | Robust and semantic needle detection in 3D ultrasound using orthogonal-plane convolutional neural networks |
title_full_unstemmed | Robust and semantic needle detection in 3D ultrasound using orthogonal-plane convolutional neural networks |
title_short | Robust and semantic needle detection in 3D ultrasound using orthogonal-plane convolutional neural networks |
title_sort | robust and semantic needle detection in 3d ultrasound using orthogonal-plane convolutional neural networks |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6132402/ https://www.ncbi.nlm.nih.gov/pubmed/29855770 http://dx.doi.org/10.1007/s11548-018-1798-3 |
work_keys_str_mv | AT pourtaherianarash robustandsemanticneedledetectionin3dultrasoundusingorthogonalplaneconvolutionalneuralnetworks AT ghazvinianzanjanifarhad robustandsemanticneedledetectionin3dultrasoundusingorthogonalplaneconvolutionalneuralnetworks AT zingersvitlana robustandsemanticneedledetectionin3dultrasoundusingorthogonalplaneconvolutionalneuralnetworks AT mihajlovicnenad robustandsemanticneedledetectionin3dultrasoundusingorthogonalplaneconvolutionalneuralnetworks AT nggaryc robustandsemanticneedledetectionin3dultrasoundusingorthogonalplaneconvolutionalneuralnetworks AT korstenhendrikushm robustandsemanticneedledetectionin3dultrasoundusingorthogonalplaneconvolutionalneuralnetworks AT dewithpeterhn robustandsemanticneedledetectionin3dultrasoundusingorthogonalplaneconvolutionalneuralnetworks |