Cargando…
Morphological diversity and connectivity of hippocampal interneurons
The mammalian forebrain is constructed from ensembles of neurons that form local microcircuits giving rise to the exquisite cognitive tasks the mammalian brain can perform. Hippocampal neuronal circuits comprise populations of relatively homogenous excitatory neurons, principal cells and exceedingly...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6132631/ https://www.ncbi.nlm.nih.gov/pubmed/30084021 http://dx.doi.org/10.1007/s00441-018-2882-2 |
_version_ | 1783354351699361792 |
---|---|
author | Booker, Sam A. Vida, Imre |
author_facet | Booker, Sam A. Vida, Imre |
author_sort | Booker, Sam A. |
collection | PubMed |
description | The mammalian forebrain is constructed from ensembles of neurons that form local microcircuits giving rise to the exquisite cognitive tasks the mammalian brain can perform. Hippocampal neuronal circuits comprise populations of relatively homogenous excitatory neurons, principal cells and exceedingly heterogeneous inhibitory neurons, the interneurons. Interneurons release GABA from their axon terminals and are capable of controlling excitability in every cellular compartment of principal cells and interneurons alike; thus, they provide a brake on excess activity, control the timing of neuronal discharge and provide modulation of synaptic transmission. The dendritic and axonal morphology of interneurons, as well as their afferent and efferent connections within hippocampal circuits, is central to their ability to differentially control excitability, in a cell-type- and compartment-specific manner. This review aims to provide an up-to-date compendium of described hippocampal interneuron subtypes, with respect to their morphology, connectivity, neurochemistry and physiology, a full understanding of which will in time help to explain the rich diversity of neuronal function. |
format | Online Article Text |
id | pubmed-6132631 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-61326312018-09-13 Morphological diversity and connectivity of hippocampal interneurons Booker, Sam A. Vida, Imre Cell Tissue Res Review The mammalian forebrain is constructed from ensembles of neurons that form local microcircuits giving rise to the exquisite cognitive tasks the mammalian brain can perform. Hippocampal neuronal circuits comprise populations of relatively homogenous excitatory neurons, principal cells and exceedingly heterogeneous inhibitory neurons, the interneurons. Interneurons release GABA from their axon terminals and are capable of controlling excitability in every cellular compartment of principal cells and interneurons alike; thus, they provide a brake on excess activity, control the timing of neuronal discharge and provide modulation of synaptic transmission. The dendritic and axonal morphology of interneurons, as well as their afferent and efferent connections within hippocampal circuits, is central to their ability to differentially control excitability, in a cell-type- and compartment-specific manner. This review aims to provide an up-to-date compendium of described hippocampal interneuron subtypes, with respect to their morphology, connectivity, neurochemistry and physiology, a full understanding of which will in time help to explain the rich diversity of neuronal function. Springer Berlin Heidelberg 2018-08-06 2018 /pmc/articles/PMC6132631/ /pubmed/30084021 http://dx.doi.org/10.1007/s00441-018-2882-2 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Review Booker, Sam A. Vida, Imre Morphological diversity and connectivity of hippocampal interneurons |
title | Morphological diversity and connectivity of hippocampal interneurons |
title_full | Morphological diversity and connectivity of hippocampal interneurons |
title_fullStr | Morphological diversity and connectivity of hippocampal interneurons |
title_full_unstemmed | Morphological diversity and connectivity of hippocampal interneurons |
title_short | Morphological diversity and connectivity of hippocampal interneurons |
title_sort | morphological diversity and connectivity of hippocampal interneurons |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6132631/ https://www.ncbi.nlm.nih.gov/pubmed/30084021 http://dx.doi.org/10.1007/s00441-018-2882-2 |
work_keys_str_mv | AT bookersama morphologicaldiversityandconnectivityofhippocampalinterneurons AT vidaimre morphologicaldiversityandconnectivityofhippocampalinterneurons |